{"title":"创新连续热封技术中工艺参数对聚合物薄膜密封强度的影响","authors":"Queen Tannous, Y. Béreaux, P. Mousseau","doi":"10.1002/pts.2700","DOIUrl":null,"url":null,"abstract":"An innovative process for packaging films sealing has been recently promoted: Heat is provided on the upper side of the polymer films. In this paper, sealing conditions are studied for two PET‐PE films. Melting temperature of the sealant layer material was determined by differential scanning calorimetry (DSC), through both conventional and successive self nucleation and annealing procedures. Interface temperature was measured during sealing, and a temperature model was fitted to compute the effective sealing time for each process parameter. Unconventional T‐peel tests were established with disk‐shaped seal samples. Strengths of the seals formed for different process parameters were measured. Results have shown that the melting temperature measured by DSC (108° C and 99° C for PE70 and PE120, respectively) is the seal initiation temperature of the materials. Results of T‐peel tests can be divided in two regions: A growth region where seal strength values increase, up to a threshold at which the seal strength is almost constant (20 N/10 mm). In the growth region, we propose a time–temperature relationship between seal strength, tool temperature, and effective sealing time in the form of an Arrhenius model CexpαTtn . The value of the time exponent n in the model is in agreement with what the chain diffusion theory predicted (n=0.5) .","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"54 1","pages":"135 - 146"},"PeriodicalIF":2.8000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of process parameters on sealing strength of polymer films in an innovative continuous heat sealing technology\",\"authors\":\"Queen Tannous, Y. Béreaux, P. Mousseau\",\"doi\":\"10.1002/pts.2700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative process for packaging films sealing has been recently promoted: Heat is provided on the upper side of the polymer films. In this paper, sealing conditions are studied for two PET‐PE films. Melting temperature of the sealant layer material was determined by differential scanning calorimetry (DSC), through both conventional and successive self nucleation and annealing procedures. Interface temperature was measured during sealing, and a temperature model was fitted to compute the effective sealing time for each process parameter. Unconventional T‐peel tests were established with disk‐shaped seal samples. Strengths of the seals formed for different process parameters were measured. Results have shown that the melting temperature measured by DSC (108° C and 99° C for PE70 and PE120, respectively) is the seal initiation temperature of the materials. Results of T‐peel tests can be divided in two regions: A growth region where seal strength values increase, up to a threshold at which the seal strength is almost constant (20 N/10 mm). In the growth region, we propose a time–temperature relationship between seal strength, tool temperature, and effective sealing time in the form of an Arrhenius model CexpαTtn . The value of the time exponent n in the model is in agreement with what the chain diffusion theory predicted (n=0.5) .\",\"PeriodicalId\":19626,\"journal\":{\"name\":\"Packaging Technology and Science\",\"volume\":\"54 1\",\"pages\":\"135 - 146\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging Technology and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pts.2700\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2700","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Influence of process parameters on sealing strength of polymer films in an innovative continuous heat sealing technology
An innovative process for packaging films sealing has been recently promoted: Heat is provided on the upper side of the polymer films. In this paper, sealing conditions are studied for two PET‐PE films. Melting temperature of the sealant layer material was determined by differential scanning calorimetry (DSC), through both conventional and successive self nucleation and annealing procedures. Interface temperature was measured during sealing, and a temperature model was fitted to compute the effective sealing time for each process parameter. Unconventional T‐peel tests were established with disk‐shaped seal samples. Strengths of the seals formed for different process parameters were measured. Results have shown that the melting temperature measured by DSC (108° C and 99° C for PE70 and PE120, respectively) is the seal initiation temperature of the materials. Results of T‐peel tests can be divided in two regions: A growth region where seal strength values increase, up to a threshold at which the seal strength is almost constant (20 N/10 mm). In the growth region, we propose a time–temperature relationship between seal strength, tool temperature, and effective sealing time in the form of an Arrhenius model CexpαTtn . The value of the time exponent n in the model is in agreement with what the chain diffusion theory predicted (n=0.5) .
期刊介绍:
Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field.
The Journal welcomes contributions in a wide range of areas in packaging technology and science, including:
-Active packaging
-Aseptic and sterile packaging
-Barrier packaging
-Design methodology
-Environmental factors and sustainability
-Ergonomics
-Food packaging
-Machinery and engineering for packaging
-Marketing aspects of packaging
-Materials
-Migration
-New manufacturing processes and techniques
-Testing, analysis and quality control
-Transport packaging