使马科维茨的投资组合优化理论具有实际应用价值

Z. Bai, Huixia Liu, W. Wong
{"title":"使马科维茨的投资组合优化理论具有实际应用价值","authors":"Z. Bai, Huixia Liu, W. Wong","doi":"10.2139/ssrn.900972","DOIUrl":null,"url":null,"abstract":"The traditional estimated return for the Markowitz mean-variance optimization has been demonstrated to be seriously departed from its theoretic value. We prove that this phenomenon is natural and the estimated optimal return is always larger than its theoretic parameter. Thereafter, we develop new bootstrap estimators for the optimal return and its asset allocation and prove that these bootstrap estimates are consistent with their counterpart parameters. Our simulation confirms the consistency; implying the essence of the portfolio analysis problem could be adequately captured by our proposed estimates. This greatly enhances the Markowitz meanvariance optimization procedure to be practically useful.","PeriodicalId":11485,"journal":{"name":"Econometrics: Applied Econometrics & Modeling eJournal","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Making Markowitz's Portfolio Optimization Theory Practically Useful\",\"authors\":\"Z. Bai, Huixia Liu, W. Wong\",\"doi\":\"10.2139/ssrn.900972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional estimated return for the Markowitz mean-variance optimization has been demonstrated to be seriously departed from its theoretic value. We prove that this phenomenon is natural and the estimated optimal return is always larger than its theoretic parameter. Thereafter, we develop new bootstrap estimators for the optimal return and its asset allocation and prove that these bootstrap estimates are consistent with their counterpart parameters. Our simulation confirms the consistency; implying the essence of the portfolio analysis problem could be adequately captured by our proposed estimates. This greatly enhances the Markowitz meanvariance optimization procedure to be practically useful.\",\"PeriodicalId\":11485,\"journal\":{\"name\":\"Econometrics: Applied Econometrics & Modeling eJournal\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometrics & Modeling eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.900972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometrics & Modeling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.900972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

传统的马科维茨均值-方差优化方法的估计收益严重偏离其理论值。我们证明了这种现象是自然的,估计的最优收益总是大于它的理论参数。然后,我们对最优收益及其资产配置提出了新的自举估计,并证明了这些自举估计与对应的参数是一致的。我们的模拟证实了这种一致性;暗示投资组合分析问题的本质可以被我们建议的估计充分捕获。这极大地增强了马科维茨平均方差优化方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Making Markowitz's Portfolio Optimization Theory Practically Useful
The traditional estimated return for the Markowitz mean-variance optimization has been demonstrated to be seriously departed from its theoretic value. We prove that this phenomenon is natural and the estimated optimal return is always larger than its theoretic parameter. Thereafter, we develop new bootstrap estimators for the optimal return and its asset allocation and prove that these bootstrap estimates are consistent with their counterpart parameters. Our simulation confirms the consistency; implying the essence of the portfolio analysis problem could be adequately captured by our proposed estimates. This greatly enhances the Markowitz meanvariance optimization procedure to be practically useful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信