从非局部热通量测量重建正交各向异性热导率

M. J. Huntul, M. S. Hussein, D. Lesnic, M. Ivanchov, N. Kinash
{"title":"从非局部热通量测量重建正交各向异性热导率","authors":"M. J. Huntul, M. S. Hussein, D. Lesnic, M. Ivanchov, N. Kinash","doi":"10.1504/ijmmno.2020.10026055","DOIUrl":null,"url":null,"abstract":"Raw materials are anisotropic and heterogeneous in nature, and recovering their conductivity is of utmost importance to the oil, aerospace and medical industries concerned with the identification of soils, reinforced fibre composites and organs. Due to the ill-posedness of the anisotropic inverse conductivity problem certain simplifications are required to make the model tracktable. Herein, we consider such a model reduction in which the conductivity tensor is orthotropic with the main diagonal components independent of one space variable. Then, the conductivity components can be taken outside the divergence operator and the inverse problem requires reconstructing one or two components of the orthotropic conductivity tensor of a two-dimensional rectangular conductor using initial and Dirichlet boundary conditions, as well as non-local heat flux over-specifications on two adjacent sides of the boundary. We prove the unique solvability of this inverse coefficient problem. Afterwards, numerical results indicate that accurate and stable solutions are obtained.","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"87 1","pages":"102-122"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reconstruction of an orthotropic thermal conductivity from non-local heat flux measurements\",\"authors\":\"M. J. Huntul, M. S. Hussein, D. Lesnic, M. Ivanchov, N. Kinash\",\"doi\":\"10.1504/ijmmno.2020.10026055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raw materials are anisotropic and heterogeneous in nature, and recovering their conductivity is of utmost importance to the oil, aerospace and medical industries concerned with the identification of soils, reinforced fibre composites and organs. Due to the ill-posedness of the anisotropic inverse conductivity problem certain simplifications are required to make the model tracktable. Herein, we consider such a model reduction in which the conductivity tensor is orthotropic with the main diagonal components independent of one space variable. Then, the conductivity components can be taken outside the divergence operator and the inverse problem requires reconstructing one or two components of the orthotropic conductivity tensor of a two-dimensional rectangular conductor using initial and Dirichlet boundary conditions, as well as non-local heat flux over-specifications on two adjacent sides of the boundary. We prove the unique solvability of this inverse coefficient problem. Afterwards, numerical results indicate that accurate and stable solutions are obtained.\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":\"87 1\",\"pages\":\"102-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2020.10026055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2020.10026055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

原材料具有各向异性和非均质性质,恢复其导电性对于涉及土壤、增强纤维复合材料和器官识别的石油、航空航天和医疗工业至关重要。由于各向异性反电导率问题的病态性,需要对模型进行一定的简化以使其易于跟踪。在这里,我们考虑这样一种模型约简,其中电导率张量是正交各向异性的,主对角分量独立于一个空间变量。然后,可以将电导率分量提取到散度算子之外,反问题需要使用初始和狄利克雷边界条件以及边界相邻两侧的非局部热流超规范重构二维矩形导体的正交各向异性电导率张量的一个或两个分量。我们证明了该逆系数问题的唯一可解性。数值结果表明,得到了精确稳定的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of an orthotropic thermal conductivity from non-local heat flux measurements
Raw materials are anisotropic and heterogeneous in nature, and recovering their conductivity is of utmost importance to the oil, aerospace and medical industries concerned with the identification of soils, reinforced fibre composites and organs. Due to the ill-posedness of the anisotropic inverse conductivity problem certain simplifications are required to make the model tracktable. Herein, we consider such a model reduction in which the conductivity tensor is orthotropic with the main diagonal components independent of one space variable. Then, the conductivity components can be taken outside the divergence operator and the inverse problem requires reconstructing one or two components of the orthotropic conductivity tensor of a two-dimensional rectangular conductor using initial and Dirichlet boundary conditions, as well as non-local heat flux over-specifications on two adjacent sides of the boundary. We prove the unique solvability of this inverse coefficient problem. Afterwards, numerical results indicate that accurate and stable solutions are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信