全局Frobenius可举性1

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Piotr Achinger, J. Witaszek, Maciej Zdanowicz
{"title":"全局Frobenius可举性1","authors":"Piotr Achinger, J. Witaszek, Maciej Zdanowicz","doi":"10.4171/JEMS/1063","DOIUrl":null,"url":null,"abstract":"We formulate a conjecture characterizing smooth projective varieties in positive characteristic whose Frobenius morphism can be lifted modulo $p^2$ - we expect that such varieties, after a finite \\'etale cover, admit a toric fibration over an ordinary abelian variety. We prove that this assertion implies a conjecture of Occhetta and Wi\\'sniewski, which states that in characteristic zero a smooth image of a projective toric variety is a toric variety. To this end we analyse the behaviour of toric varieties in families showing some generization and specialization results. Furthermore, we prove a positive characteristic analogue of Winkelmann's theorem on varieties with trivial logarithmic tangent bundle (generalising a result of Mehta-Srinivas), and thus obtaining an important special case of our conjecture. Finally, using deformations of rational curves we verify our conjecture for homogeneous spaces, solving a problem posed by Buch-Thomsen-Lauritzen-Mehta.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Global Frobenius liftability I\",\"authors\":\"Piotr Achinger, J. Witaszek, Maciej Zdanowicz\",\"doi\":\"10.4171/JEMS/1063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate a conjecture characterizing smooth projective varieties in positive characteristic whose Frobenius morphism can be lifted modulo $p^2$ - we expect that such varieties, after a finite \\\\'etale cover, admit a toric fibration over an ordinary abelian variety. We prove that this assertion implies a conjecture of Occhetta and Wi\\\\'sniewski, which states that in characteristic zero a smooth image of a projective toric variety is a toric variety. To this end we analyse the behaviour of toric varieties in families showing some generization and specialization results. Furthermore, we prove a positive characteristic analogue of Winkelmann's theorem on varieties with trivial logarithmic tangent bundle (generalising a result of Mehta-Srinivas), and thus obtaining an important special case of our conjecture. Finally, using deformations of rational curves we verify our conjecture for homogeneous spaces, solving a problem posed by Buch-Thomsen-Lauritzen-Mehta.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JEMS/1063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JEMS/1063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一个描述正特征的光滑射影变体的猜想,其Frobenius态射可以模取p^2 -我们期望这样的变体,在有限的线性覆盖之后,在普通阿贝尔变体上承认一个环颤振。我们证明了这一论断隐含了Occhetta和Wi 'sniewski的一个猜想,即在特征零点处,射影环变的光滑像是一个环变。为此,我们分析了环面品种在科中的表现,显示了一些推广和专门化的结果。进一步证明了具有平凡对数切线束的变簇上Winkelmann定理的一个正特征类似(推广了Mehta-Srinivas的结果),从而得到了我们猜想的一个重要特例。最后,利用有理曲线的变形验证了齐次空间的猜想,解决了Buch-Thomsen-Lauritzen-Mehta提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Frobenius liftability I
We formulate a conjecture characterizing smooth projective varieties in positive characteristic whose Frobenius morphism can be lifted modulo $p^2$ - we expect that such varieties, after a finite \'etale cover, admit a toric fibration over an ordinary abelian variety. We prove that this assertion implies a conjecture of Occhetta and Wi\'sniewski, which states that in characteristic zero a smooth image of a projective toric variety is a toric variety. To this end we analyse the behaviour of toric varieties in families showing some generization and specialization results. Furthermore, we prove a positive characteristic analogue of Winkelmann's theorem on varieties with trivial logarithmic tangent bundle (generalising a result of Mehta-Srinivas), and thus obtaining an important special case of our conjecture. Finally, using deformations of rational curves we verify our conjecture for homogeneous spaces, solving a problem posed by Buch-Thomsen-Lauritzen-Mehta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信