二维二元自束缚玻色液滴的呼吸模式

Philipp Sturmer, M. N. Tengstrand, Rashi Sachdeva, Stephanie M. Reimann
{"title":"二维二元自束缚玻色液滴的呼吸模式","authors":"Philipp Sturmer, M. N. Tengstrand, Rashi Sachdeva, Stephanie M. Reimann","doi":"10.1103/PhysRevA.103.053302","DOIUrl":null,"url":null,"abstract":"In this work, we present the study of the stationary structures and the breathing mode behavior of a two-dimensional self-bound binary Bose droplet. We employ an analytical approach using a variational ansatz with a super-Gaussian trial order parameter and compare it with the numerical solutions of the extended Gross-Pitaevskii equation. We find that the super-Gaussian is superior to the often used Gaussian ansatz in describing the stationary and dynamical properties of the system. We find that for sufficiently large non-rotating droplets the breathing mode is energetically favourable compared to the self-evaporating process. For small self-bound systems our results differ based on the ansatz. Inducing angular momentum by imprinting multiply quantized vortices at the droplet center, this preference for the breathing mode persists independent of the norm.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Breathing mode in two-dimensional binary self-bound Bose-gas droplets\",\"authors\":\"Philipp Sturmer, M. N. Tengstrand, Rashi Sachdeva, Stephanie M. Reimann\",\"doi\":\"10.1103/PhysRevA.103.053302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the study of the stationary structures and the breathing mode behavior of a two-dimensional self-bound binary Bose droplet. We employ an analytical approach using a variational ansatz with a super-Gaussian trial order parameter and compare it with the numerical solutions of the extended Gross-Pitaevskii equation. We find that the super-Gaussian is superior to the often used Gaussian ansatz in describing the stationary and dynamical properties of the system. We find that for sufficiently large non-rotating droplets the breathing mode is energetically favourable compared to the self-evaporating process. For small self-bound systems our results differ based on the ansatz. Inducing angular momentum by imprinting multiply quantized vortices at the droplet center, this preference for the breathing mode persists independent of the norm.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevA.103.053302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.053302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们研究了二维自束缚二元玻色液滴的固定结构和呼吸模式行为。我们采用了一种带有超高斯试序参数的变分分析方法,并将其与广义Gross-Pitaevskii方程的数值解进行了比较。我们发现超高斯在描述系统的稳态和动态特性方面优于常用的高斯方差。我们发现,对于足够大的非旋转液滴,与自蒸发过程相比,呼吸模式在能量上是有利的。对于小的自约束系统,我们的结果会根据分析结果而有所不同。通过在液滴中心压印多重量化涡流来诱导角动量,这种对呼吸模式的偏好与范数无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breathing mode in two-dimensional binary self-bound Bose-gas droplets
In this work, we present the study of the stationary structures and the breathing mode behavior of a two-dimensional self-bound binary Bose droplet. We employ an analytical approach using a variational ansatz with a super-Gaussian trial order parameter and compare it with the numerical solutions of the extended Gross-Pitaevskii equation. We find that the super-Gaussian is superior to the often used Gaussian ansatz in describing the stationary and dynamical properties of the system. We find that for sufficiently large non-rotating droplets the breathing mode is energetically favourable compared to the self-evaporating process. For small self-bound systems our results differ based on the ansatz. Inducing angular momentum by imprinting multiply quantized vortices at the droplet center, this preference for the breathing mode persists independent of the norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信