串联补偿增加潮流:以爱尔兰输电系统为例

Aidan Heffernan, Jane Courtney
{"title":"串联补偿增加潮流:以爱尔兰输电系统为例","authors":"Aidan Heffernan, Jane Courtney","doi":"10.1109/UPEC.2019.8893636","DOIUrl":null,"url":null,"abstract":"Ireland presents an interesting case study for transmission network strengthening. The majority of load in the country is located at the nation’s capital, Dublin, in the East, while most of the new conventional generation and renewable generation are found in the South-West. Power is transferred between the two via a 400 kV network. This leads to large cross- country power flows. This power distribution disparity is due to increase. A large thermal generating station which is connected to the 400 kV system in the West, will close by 2025. This generation will be replaced partially with wind generation in the South West, which is connected at 110 kV and 220 kV. This can cause power flow to avoid the 400 kV network, leading to less efficiency, overloading and other issues associated with power flow on lower voltage networks.In this paper, the application of series compensation on the 400 kV transmission network in Ireland for increasing power transfer capability is investigated and a viable solution is found. The lower voltage network is modelled to investigate the effects of 400 kV series compensation on the rest of the network. With our series compensation solution on the 400 kV network, power flows are successfully reduced on the 110 kV network as the lower reactance of the 400 kV network now attracts power to flow through the more stable and less lossy 400 kV network.","PeriodicalId":6670,"journal":{"name":"2019 54th International Universities Power Engineering Conference (UPEC)","volume":"87 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Series Compensation to Increase Power Flow: A Case Study on the Irish Transmission System\",\"authors\":\"Aidan Heffernan, Jane Courtney\",\"doi\":\"10.1109/UPEC.2019.8893636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ireland presents an interesting case study for transmission network strengthening. The majority of load in the country is located at the nation’s capital, Dublin, in the East, while most of the new conventional generation and renewable generation are found in the South-West. Power is transferred between the two via a 400 kV network. This leads to large cross- country power flows. This power distribution disparity is due to increase. A large thermal generating station which is connected to the 400 kV system in the West, will close by 2025. This generation will be replaced partially with wind generation in the South West, which is connected at 110 kV and 220 kV. This can cause power flow to avoid the 400 kV network, leading to less efficiency, overloading and other issues associated with power flow on lower voltage networks.In this paper, the application of series compensation on the 400 kV transmission network in Ireland for increasing power transfer capability is investigated and a viable solution is found. The lower voltage network is modelled to investigate the effects of 400 kV series compensation on the rest of the network. With our series compensation solution on the 400 kV network, power flows are successfully reduced on the 110 kV network as the lower reactance of the 400 kV network now attracts power to flow through the more stable and less lossy 400 kV network.\",\"PeriodicalId\":6670,\"journal\":{\"name\":\"2019 54th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"87 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 54th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2019.8893636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 54th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2019.8893636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

爱尔兰为加强输电网络提供了一个有趣的案例研究。该国的大部分负荷位于该国东部的首都都柏林,而大多数新的传统发电和可再生发电都位于西南部。电力通过一个400千伏的网络在两者之间传输。这导致了大规模的跨国电力流动。这种权力分配差距是由于增加。与西部400千伏电力系统相连的大型火力发电站将于2025年关闭。这一代将部分被西南地区的风力发电所取代,西南地区的风力发电量为110千伏和220千伏。这可能导致电流避开400kv网络,导致效率降低、过载和其他与低压网络电流相关的问题。本文研究了串联补偿在爱尔兰400kv输电网中提高输电能力的应用,并找到了可行的解决方案。建立了低压电网模型,研究了400kv串联补偿对网络其余部分的影响。通过我们在400kv网络上的串联补偿解决方案,成功地减少了110kv网络上的潮流,因为400kv网络的较低电抗现在吸引电力通过更稳定、损耗更小的400kv网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Series Compensation to Increase Power Flow: A Case Study on the Irish Transmission System
Ireland presents an interesting case study for transmission network strengthening. The majority of load in the country is located at the nation’s capital, Dublin, in the East, while most of the new conventional generation and renewable generation are found in the South-West. Power is transferred between the two via a 400 kV network. This leads to large cross- country power flows. This power distribution disparity is due to increase. A large thermal generating station which is connected to the 400 kV system in the West, will close by 2025. This generation will be replaced partially with wind generation in the South West, which is connected at 110 kV and 220 kV. This can cause power flow to avoid the 400 kV network, leading to less efficiency, overloading and other issues associated with power flow on lower voltage networks.In this paper, the application of series compensation on the 400 kV transmission network in Ireland for increasing power transfer capability is investigated and a viable solution is found. The lower voltage network is modelled to investigate the effects of 400 kV series compensation on the rest of the network. With our series compensation solution on the 400 kV network, power flows are successfully reduced on the 110 kV network as the lower reactance of the 400 kV network now attracts power to flow through the more stable and less lossy 400 kV network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信