$k$-最近邻分类规则的收敛速度

Maik Döring, L. Györfi, Harro Walk
{"title":"$k$-最近邻分类规则的收敛速度","authors":"Maik Döring, L. Györfi, Harro Walk","doi":"10.14760/OWP-2017-25","DOIUrl":null,"url":null,"abstract":"A binary classification problem is considered. The excess error probability of the k-nearestneighbor classification rule according to the error probability of the Bayes decision is revisited by a decomposition of the excess error probability into approximation and estimation errors. Under a weak margin condition and under a modified Lipschitz condition or a local Lipschitz condition, tight upper bounds are presented such that one avoids the condition that the feature vector is bounded. The concept of modified Lipschitz condition is applied for discrete distributions, too. As a consequence of both concepts, we present the rate of convergence of L2 error for the corresponding nearest neighbor regression estimate.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"27 1","pages":"227:1-227:16"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Rate of Convergence of $k$-Nearest-Neighbor Classification Rule\",\"authors\":\"Maik Döring, L. Györfi, Harro Walk\",\"doi\":\"10.14760/OWP-2017-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A binary classification problem is considered. The excess error probability of the k-nearestneighbor classification rule according to the error probability of the Bayes decision is revisited by a decomposition of the excess error probability into approximation and estimation errors. Under a weak margin condition and under a modified Lipschitz condition or a local Lipschitz condition, tight upper bounds are presented such that one avoids the condition that the feature vector is bounded. The concept of modified Lipschitz condition is applied for discrete distributions, too. As a consequence of both concepts, we present the rate of convergence of L2 error for the corresponding nearest neighbor regression estimate.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"27 1\",\"pages\":\"227:1-227:16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14760/OWP-2017-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14760/OWP-2017-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

考虑了一个二元分类问题。根据贝叶斯决策的错误概率,通过将超额错误概率分解为近似误差和估计误差,重新考察了k-最近邻分类规则的超额错误概率。在弱边界条件和改进的Lipschitz条件或局部Lipschitz条件下,给出了紧上界,从而避免了特征向量有界的条件。修正Lipschitz条件的概念也适用于离散分布。作为这两个概念的结果,我们给出了相应的最近邻回归估计的L2误差的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate of Convergence of $k$-Nearest-Neighbor Classification Rule
A binary classification problem is considered. The excess error probability of the k-nearestneighbor classification rule according to the error probability of the Bayes decision is revisited by a decomposition of the excess error probability into approximation and estimation errors. Under a weak margin condition and under a modified Lipschitz condition or a local Lipschitz condition, tight upper bounds are presented such that one avoids the condition that the feature vector is bounded. The concept of modified Lipschitz condition is applied for discrete distributions, too. As a consequence of both concepts, we present the rate of convergence of L2 error for the corresponding nearest neighbor regression estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信