{"title":"工具变量估计与R包ivtools","authors":"Arvid Sjolander, T. Martinussen","doi":"10.1515/EM-2018-0024","DOIUrl":null,"url":null,"abstract":"Abstract Instrumental variables is a popular method in epidemiology and related fields, to estimate causal effects in the presence of unmeasured confounding. Traditionally, instrumental variable analyses have been confined to linear models, in which the causal parameter of interest is typically estimated with two-stage least squares. Recently, the methodology has been extended in several directions, including two-stage estimation and so-called G-estimation in nonlinear (e. g. logistic and Cox proportional hazards) models. This paper presents a new R package, ivtools, which implements many of these new instrumental variable methods. We briefly review the theory of two-stage estimation and G-estimation, and illustrate the functionality of the ivtools package by analyzing publicly available data from a cohort study on vitamin D and mortality.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Instrumental Variable Estimation with the R Package ivtools\",\"authors\":\"Arvid Sjolander, T. Martinussen\",\"doi\":\"10.1515/EM-2018-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Instrumental variables is a popular method in epidemiology and related fields, to estimate causal effects in the presence of unmeasured confounding. Traditionally, instrumental variable analyses have been confined to linear models, in which the causal parameter of interest is typically estimated with two-stage least squares. Recently, the methodology has been extended in several directions, including two-stage estimation and so-called G-estimation in nonlinear (e. g. logistic and Cox proportional hazards) models. This paper presents a new R package, ivtools, which implements many of these new instrumental variable methods. We briefly review the theory of two-stage estimation and G-estimation, and illustrate the functionality of the ivtools package by analyzing publicly available data from a cohort study on vitamin D and mortality.\",\"PeriodicalId\":37999,\"journal\":{\"name\":\"Epidemiologic Methods\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/EM-2018-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/EM-2018-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Instrumental Variable Estimation with the R Package ivtools
Abstract Instrumental variables is a popular method in epidemiology and related fields, to estimate causal effects in the presence of unmeasured confounding. Traditionally, instrumental variable analyses have been confined to linear models, in which the causal parameter of interest is typically estimated with two-stage least squares. Recently, the methodology has been extended in several directions, including two-stage estimation and so-called G-estimation in nonlinear (e. g. logistic and Cox proportional hazards) models. This paper presents a new R package, ivtools, which implements many of these new instrumental variable methods. We briefly review the theory of two-stage estimation and G-estimation, and illustrate the functionality of the ivtools package by analyzing publicly available data from a cohort study on vitamin D and mortality.
期刊介绍:
Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis