{"title":"超强场中速度λ的有界性","authors":"Natarajan Narayanasubramanian Pinnangudi","doi":"10.22190/fumi211031045p","DOIUrl":null,"url":null,"abstract":"In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ , mµ ), where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class (c λ , mµ ), where c λ denotes the set of all λ-convergent sequences in K.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON BOUNDEDNESS WITH SPEED λ IN ULTRAMETRIC FIELDS\",\"authors\":\"Natarajan Narayanasubramanian Pinnangudi\",\"doi\":\"10.22190/fumi211031045p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ , mµ ), where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class (c λ , mµ ), where c λ denotes the set of all λ-convergent sequences in K.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi211031045p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi211031045p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ , mµ ), where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class (c λ , mµ ), where c λ denotes the set of all λ-convergent sequences in K.