超强场中速度λ的有界性

IF 0.5 Q3 MATHEMATICS
Natarajan Narayanasubramanian Pinnangudi
{"title":"超强场中速度λ的有界性","authors":"Natarajan Narayanasubramanian Pinnangudi","doi":"10.22190/fumi211031045p","DOIUrl":null,"url":null,"abstract":"In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ , mµ ), where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class (c λ , mµ ), where c λ denotes the set of all λ-convergent sequences in K.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON BOUNDEDNESS WITH SPEED λ IN ULTRAMETRIC FIELDS\",\"authors\":\"Natarajan Narayanasubramanian Pinnangudi\",\"doi\":\"10.22190/fumi211031045p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ , mµ ), where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class (c λ , mµ ), where c λ denotes the set of all λ-convergent sequences in K.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi211031045p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi211031045p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,K表示一个完备的、非平凡值的、超度量的(或非阿基米德的)场。序列、无穷级数和无穷矩阵的项都在k中。在Kangro[2,3,4]的基础上,我们引入了速度为λ或λ-有界的概念。得到了矩阵类(λ, mµ)的一个刻划,其中λ表示K中所有λ-有界序列的集合。最后给出了矩阵类(c λ, mµ)的一个注释,其中c λ表示K中所有λ-收敛序列的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON BOUNDEDNESS WITH SPEED λ IN ULTRAMETRIC FIELDS
In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ , mµ ), where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class (c λ , mµ ), where c λ denotes the set of all λ-convergent sequences in K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信