关于布尔输入线性函数(1 + λ)进化算法的第一次命中时间的注记

Jun He
{"title":"关于布尔输入线性函数(1 + λ)进化算法的第一次命中时间的注记","authors":"Jun He","doi":"10.1109/CEC.2010.5586055","DOIUrl":null,"url":null,"abstract":"Linear functions, as a canonical model of unimodal problems, have been widely used in the theoretical study of evolutionary algorithms (EAs). However in most of cases, only the simplest linear function, i.e. One-Max function, is taken in the theoretical study. A question arises naturally: whether can the results for One-Max function be generalized to linear functions? The main contribution of this paper is to generalize a result about the first hitting time of (1 + λ) EA from One-Max function [1] to linear functions. A new proof is proposed based on drift analysis. This work is a direct extension of the previous analysis of (1 + 1) EA for linear functions [2].","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"18 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A note on the first hitting time of (1 + λ) evolutionary algorithm for linear functions with boolean inputs\",\"authors\":\"Jun He\",\"doi\":\"10.1109/CEC.2010.5586055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear functions, as a canonical model of unimodal problems, have been widely used in the theoretical study of evolutionary algorithms (EAs). However in most of cases, only the simplest linear function, i.e. One-Max function, is taken in the theoretical study. A question arises naturally: whether can the results for One-Max function be generalized to linear functions? The main contribution of this paper is to generalize a result about the first hitting time of (1 + λ) EA from One-Max function [1] to linear functions. A new proof is proposed based on drift analysis. This work is a direct extension of the previous analysis of (1 + 1) EA for linear functions [2].\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"18 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

线性函数作为单峰问题的典型模型,在进化算法的理论研究中得到了广泛的应用。然而,在大多数情况下,在理论研究中只采用最简单的线性函数,即One-Max函数。一个问题自然产生了:一元极大函数的结果是否可以推广到线性函数?本文的主要贡献是将(1 + λ) EA的第一次命中时间从One-Max函数[1]推广到线性函数。提出了一种新的基于漂移分析的证明方法。这项工作是先前线性函数的(1 + 1)EA分析的直接推广[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the first hitting time of (1 + λ) evolutionary algorithm for linear functions with boolean inputs
Linear functions, as a canonical model of unimodal problems, have been widely used in the theoretical study of evolutionary algorithms (EAs). However in most of cases, only the simplest linear function, i.e. One-Max function, is taken in the theoretical study. A question arises naturally: whether can the results for One-Max function be generalized to linear functions? The main contribution of this paper is to generalize a result about the first hitting time of (1 + λ) EA from One-Max function [1] to linear functions. A new proof is proposed based on drift analysis. This work is a direct extension of the previous analysis of (1 + 1) EA for linear functions [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信