Ke Yang, A. Pellegrini, A. Brizzi, A. Alomainy, Y. Hao
{"title":"脂肪组织内部太赫兹波段通信信道路径损耗的数值分析","authors":"Ke Yang, A. Pellegrini, A. Brizzi, A. Alomainy, Y. Hao","doi":"10.1109/IMWS-BIO.2013.6756165","DOIUrl":null,"url":null,"abstract":"With the growth of the demand of smaller and smaller implantable devices, THz technologies becomes appealing for potential applications in Body Area Networks at nano-scale. As an essential part for understanding the in-body propagation at THz frequency numerical investigations are presented in this paper to simulate the absorption path loss of fat at THz frequency. The results of the proposed analysis suggest that a distance in the order of millimeter might be suitable to guarantee a communication link between nano-devices located in human tissues.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"38 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Numerical analysis of the communication channel path loss at the THz band inside the fat tissue\",\"authors\":\"Ke Yang, A. Pellegrini, A. Brizzi, A. Alomainy, Y. Hao\",\"doi\":\"10.1109/IMWS-BIO.2013.6756165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growth of the demand of smaller and smaller implantable devices, THz technologies becomes appealing for potential applications in Body Area Networks at nano-scale. As an essential part for understanding the in-body propagation at THz frequency numerical investigations are presented in this paper to simulate the absorption path loss of fat at THz frequency. The results of the proposed analysis suggest that a distance in the order of millimeter might be suitable to guarantee a communication link between nano-devices located in human tissues.\",\"PeriodicalId\":6321,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"volume\":\"38 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-BIO.2013.6756165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical analysis of the communication channel path loss at the THz band inside the fat tissue
With the growth of the demand of smaller and smaller implantable devices, THz technologies becomes appealing for potential applications in Body Area Networks at nano-scale. As an essential part for understanding the in-body propagation at THz frequency numerical investigations are presented in this paper to simulate the absorption path loss of fat at THz frequency. The results of the proposed analysis suggest that a distance in the order of millimeter might be suitable to guarantee a communication link between nano-devices located in human tissues.