分布式数据CPHF和SCF算法的性能和实现

Y. Alexeev, Michael W. Schmidt, T. Windus, M. Gordon, R. Kendall
{"title":"分布式数据CPHF和SCF算法的性能和实现","authors":"Y. Alexeev, Michael W. Schmidt, T. Windus, M. Gordon, R. Kendall","doi":"10.1109/CLUSTR.2002.1137738","DOIUrl":null,"url":null,"abstract":"This paper describes a novel distributed data parallel self consistent field (SCF) algorithm and the distributed data coupled perturbed Hartree-Fock (CPHF) step of an analytic Hessian algorithm. The distinguishing features of these algorithms are: (a) columns of density and Fock matrices are distributed among processors, (b) pairwise dynamic load balancing and an efficient static load balancer were developed to achieve a good workload, and (c) network communication time is minimized via careful analysis of data flow in the SCF and CPHF algorithms. By using a shared memory model, novel work load balancers, and improved analytic Hessian steps, we have developed codes that achieve superb performance. The performance of the CPHF code is demonstrated on a large biological system.","PeriodicalId":92128,"journal":{"name":"Proceedings. IEEE International Conference on Cluster Computing","volume":"2 1","pages":"135-142"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and implementation of distributed data CPHF and SCF algorithms\",\"authors\":\"Y. Alexeev, Michael W. Schmidt, T. Windus, M. Gordon, R. Kendall\",\"doi\":\"10.1109/CLUSTR.2002.1137738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel distributed data parallel self consistent field (SCF) algorithm and the distributed data coupled perturbed Hartree-Fock (CPHF) step of an analytic Hessian algorithm. The distinguishing features of these algorithms are: (a) columns of density and Fock matrices are distributed among processors, (b) pairwise dynamic load balancing and an efficient static load balancer were developed to achieve a good workload, and (c) network communication time is minimized via careful analysis of data flow in the SCF and CPHF algorithms. By using a shared memory model, novel work load balancers, and improved analytic Hessian steps, we have developed codes that achieve superb performance. The performance of the CPHF code is demonstrated on a large biological system.\",\"PeriodicalId\":92128,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Cluster Computing\",\"volume\":\"2 1\",\"pages\":\"135-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2002.1137738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2002.1137738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种新的分布式数据并行自洽场(SCF)算法和一种解析Hessian算法的分布式数据耦合摄动Hartree-Fock (CPHF)步骤。这些算法的显著特点是:(a)密度列和Fock矩阵分布在处理器之间;(b)开发了两两动态负载平衡和高效静态负载平衡器,以实现良好的工作负载;(c)通过仔细分析SCF和CPHF算法中的数据流,最小化了网络通信时间。通过使用共享内存模型、新颖的工作负载平衡器和改进的分析Hessian步骤,我们开发的代码实现了卓越的性能。在一个大型生物系统上验证了CPHF代码的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance and implementation of distributed data CPHF and SCF algorithms
This paper describes a novel distributed data parallel self consistent field (SCF) algorithm and the distributed data coupled perturbed Hartree-Fock (CPHF) step of an analytic Hessian algorithm. The distinguishing features of these algorithms are: (a) columns of density and Fock matrices are distributed among processors, (b) pairwise dynamic load balancing and an efficient static load balancer were developed to achieve a good workload, and (c) network communication time is minimized via careful analysis of data flow in the SCF and CPHF algorithms. By using a shared memory model, novel work load balancers, and improved analytic Hessian steps, we have developed codes that achieve superb performance. The performance of the CPHF code is demonstrated on a large biological system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信