细颗粒强化对trip辅助贝氏体铁素体钢表面残余应力的影响

Masahiro Natori, Sung-Moo Song, K. Sugimoto
{"title":"细颗粒强化对trip辅助贝氏体铁素体钢表面残余应力的影响","authors":"Masahiro Natori, Sung-Moo Song, K. Sugimoto","doi":"10.2472/JSMS.63.662","DOIUrl":null,"url":null,"abstract":"To apply a transformation-induced plasticity (TRIP)-aided steel consisting of bainitic ferrite structure matrix and metastable retained austenite of 10 vol% (TBF steel) to some precision gears, the effects of fine particle peening on the Vickers hardness and residual stress in a surface layer of the TBF steel were investigated. The peened surface layer showed much higher Vickers hardness and compressive residual stress than those of a quenched and tempered SNCM420 steel. The increased Vickers hardness was mainly caused by an increase in the strain-induced transformed martensite fraction. The compressive residual stress was increased by the increases in size and gravity of shot material and arc-height. The higher compressive residual stress was principally associated with (1) plastic strain due to severe plastic deformation and (2) expansion strain due to the strain-induced transformation of metastable retained austenite. Contribution of the (2) was approximately 30% of total residual stress.","PeriodicalId":17366,"journal":{"name":"journal of the Japan Society for Testing Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The Effects of Fine Particle Peening on Surface Residual Stress of a TRIP-Aided Bainitic Ferrite Steel\",\"authors\":\"Masahiro Natori, Sung-Moo Song, K. Sugimoto\",\"doi\":\"10.2472/JSMS.63.662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To apply a transformation-induced plasticity (TRIP)-aided steel consisting of bainitic ferrite structure matrix and metastable retained austenite of 10 vol% (TBF steel) to some precision gears, the effects of fine particle peening on the Vickers hardness and residual stress in a surface layer of the TBF steel were investigated. The peened surface layer showed much higher Vickers hardness and compressive residual stress than those of a quenched and tempered SNCM420 steel. The increased Vickers hardness was mainly caused by an increase in the strain-induced transformed martensite fraction. The compressive residual stress was increased by the increases in size and gravity of shot material and arc-height. The higher compressive residual stress was principally associated with (1) plastic strain due to severe plastic deformation and (2) expansion strain due to the strain-induced transformation of metastable retained austenite. Contribution of the (2) was approximately 30% of total residual stress.\",\"PeriodicalId\":17366,\"journal\":{\"name\":\"journal of the Japan Society for Testing Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"journal of the Japan Society for Testing Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2472/JSMS.63.662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"journal of the Japan Society for Testing Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2472/JSMS.63.662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了将由贝氏体铁素体组织基体和10%体积%亚稳残余奥氏体(TBF钢)组成的相变诱发塑性(TRIP)辅助钢应用于某些精密齿轮,研究了细颗粒强化对TBF钢表层维氏硬度和残余应力的影响。与调质后的SNCM420钢相比,经喷丸处理的表层具有更高的维氏硬度和残余压应力。维氏硬度的提高主要是由于应变诱导的相变马氏体分数的增加所致。残余压应力随射丸材料尺寸、重力和弧高的增大而增大。较高的压缩残余应力主要与(1)剧烈塑性变形引起的塑性应变和(2)应变诱导亚稳态残余奥氏体转变引起的膨胀应变有关。(2)的贡献约占总残余应力的30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Fine Particle Peening on Surface Residual Stress of a TRIP-Aided Bainitic Ferrite Steel
To apply a transformation-induced plasticity (TRIP)-aided steel consisting of bainitic ferrite structure matrix and metastable retained austenite of 10 vol% (TBF steel) to some precision gears, the effects of fine particle peening on the Vickers hardness and residual stress in a surface layer of the TBF steel were investigated. The peened surface layer showed much higher Vickers hardness and compressive residual stress than those of a quenched and tempered SNCM420 steel. The increased Vickers hardness was mainly caused by an increase in the strain-induced transformed martensite fraction. The compressive residual stress was increased by the increases in size and gravity of shot material and arc-height. The higher compressive residual stress was principally associated with (1) plastic strain due to severe plastic deformation and (2) expansion strain due to the strain-induced transformation of metastable retained austenite. Contribution of the (2) was approximately 30% of total residual stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信