R4中磁金兹堡-朗道方程的全解

Yong Liu, Xinan Ma, Juncheng Wei, Wangzhe Wu
{"title":"R4中磁金兹堡-朗道方程的全解","authors":"Yong Liu, Xinan Ma, Juncheng Wei, Wangzhe Wu","doi":"10.2422/2036-2145.202209_005","DOIUrl":null,"url":null,"abstract":"We construct entire solutions of the magnetic Ginzburg-Landau equations in dimension 4 using Lyapunov-Schmidt reduction. The zero set of these solutions are close to the minimal submanifolds studied by Arezzo-Pacard[1]. We also show the existence of a saddle type solution to the equations, whose zero set consists of two vertical planes in R 4 . These two types of solutions are believed to be energy minimizers of the corresponding energy functional and lie in the same connect component of the moduli space of entire solutions.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Entire solutions of the magnetic Ginzburg-Landau equation in R4\",\"authors\":\"Yong Liu, Xinan Ma, Juncheng Wei, Wangzhe Wu\",\"doi\":\"10.2422/2036-2145.202209_005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct entire solutions of the magnetic Ginzburg-Landau equations in dimension 4 using Lyapunov-Schmidt reduction. The zero set of these solutions are close to the minimal submanifolds studied by Arezzo-Pacard[1]. We also show the existence of a saddle type solution to the equations, whose zero set consists of two vertical planes in R 4 . These two types of solutions are believed to be energy minimizers of the corresponding energy functional and lie in the same connect component of the moduli space of entire solutions.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202209_005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202209_005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用Lyapunov-Schmidt约简构造了4维磁金兹堡-朗道方程的全解。这些解的零集接近于Arezzo-Pacard[1]研究的最小子流形。我们还证明了方程组的鞍型解的存在性,其零集由r2中的两个垂直平面组成。这两类解被认为是对应能量泛函的能量最小值,并且位于整个解的模空间的同一连接分量中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entire solutions of the magnetic Ginzburg-Landau equation in R4
We construct entire solutions of the magnetic Ginzburg-Landau equations in dimension 4 using Lyapunov-Schmidt reduction. The zero set of these solutions are close to the minimal submanifolds studied by Arezzo-Pacard[1]. We also show the existence of a saddle type solution to the equations, whose zero set consists of two vertical planes in R 4 . These two types of solutions are believed to be energy minimizers of the corresponding energy functional and lie in the same connect component of the moduli space of entire solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信