{"title":"采用基于人工神经网络的集总建模方法实现厂房的实时模型预测加热控制","authors":"Seon-Jung 쇱꽑以 Ra, H. Shin, C. Park","doi":"10.1080/19401493.2022.2125581","DOIUrl":null,"url":null,"abstract":"ABSTRACT It is important to control the heating system by following real-time demand, while considering the dynamic changes and non-uniform distributions of indoor environments. This paper presents a model predictive control (MPC) scheme for predicting indoor air temperatures at multiple points in a large factory building that consists of large irregular spaces and heat-generating equipment. Instead of using a full-blown dynamic simulation model (e.g. EnergyPlus), the authors developed a lumped simulation model. This model can accurately predict the temperatures and is, therefore, used for the optimal on/off control of 61 unit heaters installed in the factory building. Based on the MPC, energy savings of 56.3% were realized over three weeks, and the indoor air temperatures were maintained within a comfortable range. It is highlighted in the paper that this MPC approach based on the minimalistic lumped model can accurately predict indoor thermal behaviour and save significant energy.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"36 1","pages":"163 - 178"},"PeriodicalIF":2.2000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of real-time model predictive heating control for a factory building using ANN-based lumped modelling approach\",\"authors\":\"Seon-Jung 쇱꽑以 Ra, H. Shin, C. Park\",\"doi\":\"10.1080/19401493.2022.2125581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT It is important to control the heating system by following real-time demand, while considering the dynamic changes and non-uniform distributions of indoor environments. This paper presents a model predictive control (MPC) scheme for predicting indoor air temperatures at multiple points in a large factory building that consists of large irregular spaces and heat-generating equipment. Instead of using a full-blown dynamic simulation model (e.g. EnergyPlus), the authors developed a lumped simulation model. This model can accurately predict the temperatures and is, therefore, used for the optimal on/off control of 61 unit heaters installed in the factory building. Based on the MPC, energy savings of 56.3% were realized over three weeks, and the indoor air temperatures were maintained within a comfortable range. It is highlighted in the paper that this MPC approach based on the minimalistic lumped model can accurately predict indoor thermal behaviour and save significant energy.\",\"PeriodicalId\":49168,\"journal\":{\"name\":\"Journal of Building Performance Simulation\",\"volume\":\"36 1\",\"pages\":\"163 - 178\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Performance Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19401493.2022.2125581\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2125581","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Implementation of real-time model predictive heating control for a factory building using ANN-based lumped modelling approach
ABSTRACT It is important to control the heating system by following real-time demand, while considering the dynamic changes and non-uniform distributions of indoor environments. This paper presents a model predictive control (MPC) scheme for predicting indoor air temperatures at multiple points in a large factory building that consists of large irregular spaces and heat-generating equipment. Instead of using a full-blown dynamic simulation model (e.g. EnergyPlus), the authors developed a lumped simulation model. This model can accurately predict the temperatures and is, therefore, used for the optimal on/off control of 61 unit heaters installed in the factory building. Based on the MPC, energy savings of 56.3% were realized over three weeks, and the indoor air temperatures were maintained within a comfortable range. It is highlighted in the paper that this MPC approach based on the minimalistic lumped model can accurately predict indoor thermal behaviour and save significant energy.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.