从直接数据或噪声数据对条件密度的非紧致估计

IF 1.5 Q2 PHYSICS, MATHEMATICAL
F. Comte, C. Lacour
{"title":"从直接数据或噪声数据对条件密度的非紧致估计","authors":"F. Comte, C. Lacour","doi":"10.1214/22-aihp1291","DOIUrl":null,"url":null,"abstract":". In this paper, we propose a nonparametric estimation strategy for the conditional density function of Y given X , from independent and identically distributed observations ( X i , Y i ) 1 ≤ i ≤ n . We consider a regression strategy related to projection subspaces of L 2 generated by non compactly supported bases. This (cid:28)rst study is then extended to the case where Y is not directly observed, but only Z = Y + ε , where ε is a noise with known density. In these two settings, we build and study collections of estimators, compute their rates of convergence on anisotropic space on non-compact supports, and prove related lower bounds. Then, we consider adaptive estimators for which we also prove risk bounds.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non compact estimation of the conditional density from direct or noisy data\",\"authors\":\"F. Comte, C. Lacour\",\"doi\":\"10.1214/22-aihp1291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we propose a nonparametric estimation strategy for the conditional density function of Y given X , from independent and identically distributed observations ( X i , Y i ) 1 ≤ i ≤ n . We consider a regression strategy related to projection subspaces of L 2 generated by non compactly supported bases. This (cid:28)rst study is then extended to the case where Y is not directly observed, but only Z = Y + ε , where ε is a noise with known density. In these two settings, we build and study collections of estimators, compute their rates of convergence on anisotropic space on non-compact supports, and prove related lower bounds. Then, we consider adaptive estimators for which we also prove risk bounds.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

. 本文针对给定X的独立同分布观测值(X i, Y i) 1≤i≤n,提出了Y的条件密度函数的非参数估计策略。我们考虑了一种由非紧支持基生成的l2的投影子空间的回归策略。这(cid:28)第一个研究然后被扩展到没有直接观察到Y,而只有Z = Y + ε的情况,其中ε是已知密度的噪声。在这两种情况下,我们建立和研究了估计量集合,计算了它们在非紧支撑上的各向异性空间上的收敛速率,并证明了相关的下界。然后,我们考虑自适应估计器,我们也证明了风险界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non compact estimation of the conditional density from direct or noisy data
. In this paper, we propose a nonparametric estimation strategy for the conditional density function of Y given X , from independent and identically distributed observations ( X i , Y i ) 1 ≤ i ≤ n . We consider a regression strategy related to projection subspaces of L 2 generated by non compactly supported bases. This (cid:28)rst study is then extended to the case where Y is not directly observed, but only Z = Y + ε , where ε is a noise with known density. In these two settings, we build and study collections of estimators, compute their rates of convergence on anisotropic space on non-compact supports, and prove related lower bounds. Then, we consider adaptive estimators for which we also prove risk bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信