Md. Yah-Ya Ul Haque, Jakir Hasan, M. Islam, Md. Rabiul Islam
{"title":"串并联谐振型故障限流器增强dfig型风电场低压穿越能力","authors":"Md. Yah-Ya Ul Haque, Jakir Hasan, M. Islam, Md. Rabiul Islam","doi":"10.3390/wind1010002","DOIUrl":null,"url":null,"abstract":"The introduction of doubly fed induction generators (DFIGs) has facilitated the utilization of wind energy to a great extent and constituted distributed generation (DG) systems in remote places. Therefore, long transmission lines are required to interconnect with the utility grid and, consequently, different short-circuit faults interrupt this transmission. Use of different fault current limiters (FCLs) minimizes the effect of faults and allows normal operation with minimum interruption in power flow. In this study, a series-parallel resonance-type fault current limiter (SPRFCL) is presented for enhancing the low-voltage ride-through (LVRT) capability of DFIG-based wind farms. The SPRFCL preserves the nominal voltage and power quality within the permissible limit during normal operation and during disturbances irrespective of the type of fault. The effectiveness of the proposed SPRFCL is validated by simulating both symmetrical and asymmetrical faults. Alongside the SPRFCL, two state-of-the-art FCLs—the parallel resonance-type fault current limiter (PRFCL) and the capacitive bridge-type fault current limiter (CBFCL)—are considered to investigate and compare the relative performances. Several graphical and numerical studies assure the efficacy of the proposed SPRFCL in wind farm application in multiple aspect. Moreover, the stunning total harmonic distortion (THD) values with the proposed technique signifies the excellency over its competitors. Additionally, the sub-synchronous resonance (SSR) analysis confirms the supremacy of SPRFCL for series compensated lines.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"91 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter\",\"authors\":\"Md. Yah-Ya Ul Haque, Jakir Hasan, M. Islam, Md. Rabiul Islam\",\"doi\":\"10.3390/wind1010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The introduction of doubly fed induction generators (DFIGs) has facilitated the utilization of wind energy to a great extent and constituted distributed generation (DG) systems in remote places. Therefore, long transmission lines are required to interconnect with the utility grid and, consequently, different short-circuit faults interrupt this transmission. Use of different fault current limiters (FCLs) minimizes the effect of faults and allows normal operation with minimum interruption in power flow. In this study, a series-parallel resonance-type fault current limiter (SPRFCL) is presented for enhancing the low-voltage ride-through (LVRT) capability of DFIG-based wind farms. The SPRFCL preserves the nominal voltage and power quality within the permissible limit during normal operation and during disturbances irrespective of the type of fault. The effectiveness of the proposed SPRFCL is validated by simulating both symmetrical and asymmetrical faults. Alongside the SPRFCL, two state-of-the-art FCLs—the parallel resonance-type fault current limiter (PRFCL) and the capacitive bridge-type fault current limiter (CBFCL)—are considered to investigate and compare the relative performances. Several graphical and numerical studies assure the efficacy of the proposed SPRFCL in wind farm application in multiple aspect. Moreover, the stunning total harmonic distortion (THD) values with the proposed technique signifies the excellency over its competitors. Additionally, the sub-synchronous resonance (SSR) analysis confirms the supremacy of SPRFCL for series compensated lines.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind1010002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind1010002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter
The introduction of doubly fed induction generators (DFIGs) has facilitated the utilization of wind energy to a great extent and constituted distributed generation (DG) systems in remote places. Therefore, long transmission lines are required to interconnect with the utility grid and, consequently, different short-circuit faults interrupt this transmission. Use of different fault current limiters (FCLs) minimizes the effect of faults and allows normal operation with minimum interruption in power flow. In this study, a series-parallel resonance-type fault current limiter (SPRFCL) is presented for enhancing the low-voltage ride-through (LVRT) capability of DFIG-based wind farms. The SPRFCL preserves the nominal voltage and power quality within the permissible limit during normal operation and during disturbances irrespective of the type of fault. The effectiveness of the proposed SPRFCL is validated by simulating both symmetrical and asymmetrical faults. Alongside the SPRFCL, two state-of-the-art FCLs—the parallel resonance-type fault current limiter (PRFCL) and the capacitive bridge-type fault current limiter (CBFCL)—are considered to investigate and compare the relative performances. Several graphical and numerical studies assure the efficacy of the proposed SPRFCL in wind farm application in multiple aspect. Moreover, the stunning total harmonic distortion (THD) values with the proposed technique signifies the excellency over its competitors. Additionally, the sub-synchronous resonance (SSR) analysis confirms the supremacy of SPRFCL for series compensated lines.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.