串并联谐振型故障限流器增强dfig型风电场低压穿越能力

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Md. Yah-Ya Ul Haque, Jakir Hasan, M. Islam, Md. Rabiul Islam
{"title":"串并联谐振型故障限流器增强dfig型风电场低压穿越能力","authors":"Md. Yah-Ya Ul Haque, Jakir Hasan, M. Islam, Md. Rabiul Islam","doi":"10.3390/wind1010002","DOIUrl":null,"url":null,"abstract":"The introduction of doubly fed induction generators (DFIGs) has facilitated the utilization of wind energy to a great extent and constituted distributed generation (DG) systems in remote places. Therefore, long transmission lines are required to interconnect with the utility grid and, consequently, different short-circuit faults interrupt this transmission. Use of different fault current limiters (FCLs) minimizes the effect of faults and allows normal operation with minimum interruption in power flow. In this study, a series-parallel resonance-type fault current limiter (SPRFCL) is presented for enhancing the low-voltage ride-through (LVRT) capability of DFIG-based wind farms. The SPRFCL preserves the nominal voltage and power quality within the permissible limit during normal operation and during disturbances irrespective of the type of fault. The effectiveness of the proposed SPRFCL is validated by simulating both symmetrical and asymmetrical faults. Alongside the SPRFCL, two state-of-the-art FCLs—the parallel resonance-type fault current limiter (PRFCL) and the capacitive bridge-type fault current limiter (CBFCL)—are considered to investigate and compare the relative performances. Several graphical and numerical studies assure the efficacy of the proposed SPRFCL in wind farm application in multiple aspect. Moreover, the stunning total harmonic distortion (THD) values with the proposed technique signifies the excellency over its competitors. Additionally, the sub-synchronous resonance (SSR) analysis confirms the supremacy of SPRFCL for series compensated lines.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter\",\"authors\":\"Md. Yah-Ya Ul Haque, Jakir Hasan, M. Islam, Md. Rabiul Islam\",\"doi\":\"10.3390/wind1010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The introduction of doubly fed induction generators (DFIGs) has facilitated the utilization of wind energy to a great extent and constituted distributed generation (DG) systems in remote places. Therefore, long transmission lines are required to interconnect with the utility grid and, consequently, different short-circuit faults interrupt this transmission. Use of different fault current limiters (FCLs) minimizes the effect of faults and allows normal operation with minimum interruption in power flow. In this study, a series-parallel resonance-type fault current limiter (SPRFCL) is presented for enhancing the low-voltage ride-through (LVRT) capability of DFIG-based wind farms. The SPRFCL preserves the nominal voltage and power quality within the permissible limit during normal operation and during disturbances irrespective of the type of fault. The effectiveness of the proposed SPRFCL is validated by simulating both symmetrical and asymmetrical faults. Alongside the SPRFCL, two state-of-the-art FCLs—the parallel resonance-type fault current limiter (PRFCL) and the capacitive bridge-type fault current limiter (CBFCL)—are considered to investigate and compare the relative performances. Several graphical and numerical studies assure the efficacy of the proposed SPRFCL in wind farm application in multiple aspect. Moreover, the stunning total harmonic distortion (THD) values with the proposed technique signifies the excellency over its competitors. Additionally, the sub-synchronous resonance (SSR) analysis confirms the supremacy of SPRFCL for series compensated lines.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind1010002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind1010002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

双馈感应发电机(DFIGs)的引入在很大程度上促进了风能的利用,构成了偏远地区的分布式发电(DG)系统。因此,需要较长的输电线路与公用电网互连,因此,不同的短路故障中断了这种传输。使用不同的故障限流器(fcl)可以最大限度地减少故障的影响,并允许在潮流中以最小的中断正常运行。在这项研究中,提出了一种串并联谐振型故障限流器(SPRFCL),用于增强基于dfig的风电场的低压穿越(LVRT)能力。SPRFCL在正常运行和干扰期间保持标称电压和电能质量在允许范围内,无论故障类型如何。通过对对称故障和非对称故障的仿真,验证了该方法的有效性。与SPRFCL一起,考虑了两种最先进的fcl -并联谐振型故障限流器(PRFCL)和电容式桥式故障限流器(CBFCL) -来研究和比较相对性能。若干图解和数值研究从多个方面证明了该方法在风电场应用中的有效性。此外,该技术具有惊人的总谐波失真(THD)值,标志着其优于竞争对手的优势。此外,次同步谐振(SSR)分析证实了SPRFCL在串联补偿线路中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter
The introduction of doubly fed induction generators (DFIGs) has facilitated the utilization of wind energy to a great extent and constituted distributed generation (DG) systems in remote places. Therefore, long transmission lines are required to interconnect with the utility grid and, consequently, different short-circuit faults interrupt this transmission. Use of different fault current limiters (FCLs) minimizes the effect of faults and allows normal operation with minimum interruption in power flow. In this study, a series-parallel resonance-type fault current limiter (SPRFCL) is presented for enhancing the low-voltage ride-through (LVRT) capability of DFIG-based wind farms. The SPRFCL preserves the nominal voltage and power quality within the permissible limit during normal operation and during disturbances irrespective of the type of fault. The effectiveness of the proposed SPRFCL is validated by simulating both symmetrical and asymmetrical faults. Alongside the SPRFCL, two state-of-the-art FCLs—the parallel resonance-type fault current limiter (PRFCL) and the capacitive bridge-type fault current limiter (CBFCL)—are considered to investigate and compare the relative performances. Several graphical and numerical studies assure the efficacy of the proposed SPRFCL in wind farm application in multiple aspect. Moreover, the stunning total harmonic distortion (THD) values with the proposed technique signifies the excellency over its competitors. Additionally, the sub-synchronous resonance (SSR) analysis confirms the supremacy of SPRFCL for series compensated lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信