时变平衰落SIMO信道的最大似然信噪比估计

F. Bellili, Rabii Meftehi, S. Affes, A. Stephenne
{"title":"时变平衰落SIMO信道的最大似然信噪比估计","authors":"F. Bellili, Rabii Meftehi, S. Affes, A. Stephenne","doi":"10.1109/ICASSP.2014.6854861","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new signal-to-noise-ratio (SNR) maximum likelihood (ML) estimator over time-varying single-input multiple-output (SIMO) channels, for both data-aided (DA) and non-data-aided (NDA) cases. Unlike the classical techniques which assume the channel to be slowly time-varying and, therefore, considered as constant during the observation period, we address the more challenging problem of instantaneous SNR estimation over fast time-varying channels. The channel variations are locally tracked using a polynomial-in-time expansion. In the DA scenario, the ML estimator is developed in closed-form expression. In the NDA scenario, however, the ML estimates of the per-antenna SNRs are obtained iteratively, with very few iterations, using the expectation-maximization (EM) procedure. Our estimator is able to accurately estimate the instantaneous SNRs over a wide range of average SNR. We show through extensive Monte-Carlo simulations that the new estimator outperforms previously developed solutions.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"35 1","pages":"6523-6527"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Maximum likelihood SNR estimation over time-varying flat-fading SIMO channels\",\"authors\":\"F. Bellili, Rabii Meftehi, S. Affes, A. Stephenne\",\"doi\":\"10.1109/ICASSP.2014.6854861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new signal-to-noise-ratio (SNR) maximum likelihood (ML) estimator over time-varying single-input multiple-output (SIMO) channels, for both data-aided (DA) and non-data-aided (NDA) cases. Unlike the classical techniques which assume the channel to be slowly time-varying and, therefore, considered as constant during the observation period, we address the more challenging problem of instantaneous SNR estimation over fast time-varying channels. The channel variations are locally tracked using a polynomial-in-time expansion. In the DA scenario, the ML estimator is developed in closed-form expression. In the NDA scenario, however, the ML estimates of the per-antenna SNRs are obtained iteratively, with very few iterations, using the expectation-maximization (EM) procedure. Our estimator is able to accurately estimate the instantaneous SNRs over a wide range of average SNR. We show through extensive Monte-Carlo simulations that the new estimator outperforms previously developed solutions.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"35 1\",\"pages\":\"6523-6527\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种新的时变单输入多输出(SIMO)通道上的信噪比(SNR)最大似然(ML)估计器,适用于数据辅助(DA)和非数据辅助(NDA)情况。与传统技术假设信道是缓慢时变的,因此在观测期间被认为是恒定的不同,我们解决了在快速时变信道上的瞬时信噪比估计的更具挑战性的问题。通道变化是局部跟踪使用多项式在时间展开。在数据分析场景中,机器学习估计器以封闭形式表达。然而,在NDA场景中,使用期望最大化(EM)过程迭代地获得每天线信噪比的ML估计,迭代次数很少。我们的估计器能够在很宽的平均信噪比范围内准确估计瞬时信噪比。我们通过广泛的蒙特卡罗模拟表明,新的估计器优于以前开发的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood SNR estimation over time-varying flat-fading SIMO channels
In this paper, we propose a new signal-to-noise-ratio (SNR) maximum likelihood (ML) estimator over time-varying single-input multiple-output (SIMO) channels, for both data-aided (DA) and non-data-aided (NDA) cases. Unlike the classical techniques which assume the channel to be slowly time-varying and, therefore, considered as constant during the observation period, we address the more challenging problem of instantaneous SNR estimation over fast time-varying channels. The channel variations are locally tracked using a polynomial-in-time expansion. In the DA scenario, the ML estimator is developed in closed-form expression. In the NDA scenario, however, the ML estimates of the per-antenna SNRs are obtained iteratively, with very few iterations, using the expectation-maximization (EM) procedure. Our estimator is able to accurately estimate the instantaneous SNRs over a wide range of average SNR. We show through extensive Monte-Carlo simulations that the new estimator outperforms previously developed solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信