基于超图随机游走算法的视频镜头标注

Xianfeng Li, Yongzhao Zhan, Sen Xu
{"title":"基于超图随机游走算法的视频镜头标注","authors":"Xianfeng Li, Yongzhao Zhan, Sen Xu","doi":"10.1109/IHMSC.2015.92","DOIUrl":null,"url":null,"abstract":"We introduced a semi-supervised learning framework based on hyper graph random walk algorithm (HRWA) for content-based video-shot annotation, in which a probabilistic hyper graph is used to represent the relevance relationship among the vertices (video shots). First, based on the similarity matrix computed from attribute values of video shots, a label random walk graph is built on the training set. Second, the random walk processing is carried on a hyper graph system when an unlabeled data arrives and a probability distribution among all labels is obtained. Then, the label category of each shot is determined according to the threshold. Finally, the effectiveness of HRWA is demonstrated by experiments on news video database of TRECVID 2007.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"45 1","pages":"167-170"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video Shot Annotation Based on Hypergraph Random Walk Algorithm\",\"authors\":\"Xianfeng Li, Yongzhao Zhan, Sen Xu\",\"doi\":\"10.1109/IHMSC.2015.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduced a semi-supervised learning framework based on hyper graph random walk algorithm (HRWA) for content-based video-shot annotation, in which a probabilistic hyper graph is used to represent the relevance relationship among the vertices (video shots). First, based on the similarity matrix computed from attribute values of video shots, a label random walk graph is built on the training set. Second, the random walk processing is carried on a hyper graph system when an unlabeled data arrives and a probability distribution among all labels is obtained. Then, the label category of each shot is determined according to the threshold. Finally, the effectiveness of HRWA is demonstrated by experiments on news video database of TRECVID 2007.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"45 1\",\"pages\":\"167-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于超图随机游走算法(HRWA)的半监督学习框架,用于基于内容的视频片段标注,其中使用概率超图来表示顶点(视频片段)之间的关联关系。首先,基于视频片段属性值计算的相似矩阵,在训练集上构建标签随机游走图;其次,在超图系统中对未标记数据进行随机游走处理,得到所有标记之间的概率分布;然后,根据阈值确定每个镜头的标签类别。最后,在TRECVID 2007新闻视频数据库上进行了实验,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Shot Annotation Based on Hypergraph Random Walk Algorithm
We introduced a semi-supervised learning framework based on hyper graph random walk algorithm (HRWA) for content-based video-shot annotation, in which a probabilistic hyper graph is used to represent the relevance relationship among the vertices (video shots). First, based on the similarity matrix computed from attribute values of video shots, a label random walk graph is built on the training set. Second, the random walk processing is carried on a hyper graph system when an unlabeled data arrives and a probability distribution among all labels is obtained. Then, the label category of each shot is determined according to the threshold. Finally, the effectiveness of HRWA is demonstrated by experiments on news video database of TRECVID 2007.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信