在线一类Svm学习的恒定虚警率

Yongjian Xue, P. Beauseroy
{"title":"在线一类Svm学习的恒定虚警率","authors":"Yongjian Xue, P. Beauseroy","doi":"10.1109/ICASSP.2018.8462022","DOIUrl":null,"url":null,"abstract":"Many one class SVM applications require online learning technique when time series data are encountered. Most of the existing methods for online SVM learning are based on C SVM without adapting the constraint parameter dynamically as the number of training samples increases. In such case the false alarm rate decreases while the miss alarm rate increases gradually for one class SVM. In most applications we prefer a relatively stable performance, especially the false alarm rate. In order to solve that problem, we propose an online version of v-OeSVM. Experiments on toy and real datasets show that v-OeSVM is a good mean to target a given false alarm rate while the AUC increases slowly as the number of new samples increases.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"2821-2825"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constant False Alarm Rate for Online one Class Svm Learning\",\"authors\":\"Yongjian Xue, P. Beauseroy\",\"doi\":\"10.1109/ICASSP.2018.8462022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many one class SVM applications require online learning technique when time series data are encountered. Most of the existing methods for online SVM learning are based on C SVM without adapting the constraint parameter dynamically as the number of training samples increases. In such case the false alarm rate decreases while the miss alarm rate increases gradually for one class SVM. In most applications we prefer a relatively stable performance, especially the false alarm rate. In order to solve that problem, we propose an online version of v-OeSVM. Experiments on toy and real datasets show that v-OeSVM is a good mean to target a given false alarm rate while the AUC increases slowly as the number of new samples increases.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"30 1\",\"pages\":\"2821-2825\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多单类支持向量机应用在遇到时间序列数据时都需要在线学习技术。现有的支持向量机在线学习方法大多是基于C支持向量机,不能随着训练样本数量的增加而动态调整约束参数。在这种情况下,一类支持向量机的虚警率逐渐降低,漏警率逐渐增加。在大多数应用中,我们更喜欢相对稳定的性能,尤其是虚警率。为了解决这个问题,我们提出了一个在线版本的v-OeSVM。在玩具和真实数据集上的实验表明,当AUC随着新样本数量的增加而缓慢增加时,v-OeSVM是针对给定虚警率的一个很好的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constant False Alarm Rate for Online one Class Svm Learning
Many one class SVM applications require online learning technique when time series data are encountered. Most of the existing methods for online SVM learning are based on C SVM without adapting the constraint parameter dynamically as the number of training samples increases. In such case the false alarm rate decreases while the miss alarm rate increases gradually for one class SVM. In most applications we prefer a relatively stable performance, especially the false alarm rate. In order to solve that problem, we propose an online version of v-OeSVM. Experiments on toy and real datasets show that v-OeSVM is a good mean to target a given false alarm rate while the AUC increases slowly as the number of new samples increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信