{"title":"格拉斯哥并行约简机:使用并行任务组合编程共享内存多核系统","authors":"Ashkan Tousimojarad, W. Vanderbauwhede","doi":"10.4204/EPTCS.137.7","DOIUrl":null,"url":null,"abstract":"We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.","PeriodicalId":53164,"journal":{"name":"Journal of Historic Buildings and Places","volume":"85 1","pages":"79-94"},"PeriodicalIF":0.1000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition\",\"authors\":\"Ashkan Tousimojarad, W. Vanderbauwhede\",\"doi\":\"10.4204/EPTCS.137.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.\",\"PeriodicalId\":53164,\"journal\":{\"name\":\"Journal of Historic Buildings and Places\",\"volume\":\"85 1\",\"pages\":\"79-94\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2013-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Historic Buildings and Places\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.137.7\",\"RegionNum\":4,\"RegionCategory\":\"历史学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Historic Buildings and Places","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.137.7","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition
We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.