基于稳健m估计的矩阵补全

Michael Muma, W. Zeng, A. Zoubir
{"title":"基于稳健m估计的矩阵补全","authors":"Michael Muma, W. Zeng, A. Zoubir","doi":"10.1109/ICASSP.2019.8682657","DOIUrl":null,"url":null,"abstract":"Conventional approaches to matrix completion are sensitive to outliers and impulsive noise. This paper develops robust and computationally efficient M-estimation based matrix completion algorithms. By appropriately arranging the observed entries, and then applying alternating minimization, the robust matrix completion problem is converted into a set of regression M-estimation problems. Making use of differentiable loss functions, the proposed algorithm overcomes a weakness of the ℓp-loss (p ≤ 1), which easily gets stuck in an inferior point. We prove that our algorithm converges to a stationary point of the nonconvex problem. Huber’s joint M-estimate of regression and scale can be used as a robust starting point for Tukey’s redescending M-estimator of regression based on an auxiliary scale. Numerical experiments on synthetic and real-world data demonstrate the superiority to state-of-the-art approaches.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"31 1","pages":"5476-5480"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Robust M-estimation Based Matrix Completion\",\"authors\":\"Michael Muma, W. Zeng, A. Zoubir\",\"doi\":\"10.1109/ICASSP.2019.8682657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional approaches to matrix completion are sensitive to outliers and impulsive noise. This paper develops robust and computationally efficient M-estimation based matrix completion algorithms. By appropriately arranging the observed entries, and then applying alternating minimization, the robust matrix completion problem is converted into a set of regression M-estimation problems. Making use of differentiable loss functions, the proposed algorithm overcomes a weakness of the ℓp-loss (p ≤ 1), which easily gets stuck in an inferior point. We prove that our algorithm converges to a stationary point of the nonconvex problem. Huber’s joint M-estimate of regression and scale can be used as a robust starting point for Tukey’s redescending M-estimator of regression based on an auxiliary scale. Numerical experiments on synthetic and real-world data demonstrate the superiority to state-of-the-art approaches.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"31 1\",\"pages\":\"5476-5480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

传统的矩阵补全方法对异常值和脉冲噪声很敏感。本文开发了一种鲁棒且计算效率高的基于m估计的矩阵补全算法。将鲁棒矩阵补全问题转化为一组回归m估计问题,通过对观测项进行适当的排列,然后采用交替最小化方法。该算法利用可微损失函数,克服了p-损失(p≤1)容易陷入劣点的缺点。证明了该算法收敛于非凸问题的一个平稳点。Huber的回归和尺度的联合m估计可以作为Tukey基于辅助尺度的回归的重降m估计的稳健起点。综合数据和实际数据的数值实验证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust M-estimation Based Matrix Completion
Conventional approaches to matrix completion are sensitive to outliers and impulsive noise. This paper develops robust and computationally efficient M-estimation based matrix completion algorithms. By appropriately arranging the observed entries, and then applying alternating minimization, the robust matrix completion problem is converted into a set of regression M-estimation problems. Making use of differentiable loss functions, the proposed algorithm overcomes a weakness of the ℓp-loss (p ≤ 1), which easily gets stuck in an inferior point. We prove that our algorithm converges to a stationary point of the nonconvex problem. Huber’s joint M-estimate of regression and scale can be used as a robust starting point for Tukey’s redescending M-estimator of regression based on an auxiliary scale. Numerical experiments on synthetic and real-world data demonstrate the superiority to state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信