微型热光伏系统原型的设计构想与测试

J. Pan, Jianning Ding, Wenming Yang, Detao Li, H. Xue
{"title":"微型热光伏系统原型的设计构想与测试","authors":"J. Pan, Jianning Ding, Wenming Yang, Detao Li, H. Xue","doi":"10.1109/NEMS.2006.334657","DOIUrl":null,"url":null,"abstract":"The design and testing of micro thermophotovoltaic (micro-TPV) system is described in this paper. The system is made of a SiC emitter, a dielectric filter and a GaSb photovoltaic cell array. The open-circuit voltage and short-circuit current can be measured by a multimeter, and the output power can be calculated. The effect of mass flux and the distance between the PV cell and outer wall of the combustor on the output power is also analyzed. When the flow rate of hydrogen is 4.133 g/hr and the H2/O2 ratio is 1.8, the micro-TPV system is able to deliver an electrical power output of 1.355W in a micro combustor of 0.195 cm3 in volume. The open-circuit electrical voltage and short-circuit current are 1.85 V and 1.032 amp respectively. This work makes it possible for us to replace batteries with micro-TPV systems as the power of micro mechanical devices in near future","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"31 1","pages":"144-148"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Conceits and Testing of a Prototype Micro Thermophotovoltaic System\",\"authors\":\"J. Pan, Jianning Ding, Wenming Yang, Detao Li, H. Xue\",\"doi\":\"10.1109/NEMS.2006.334657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and testing of micro thermophotovoltaic (micro-TPV) system is described in this paper. The system is made of a SiC emitter, a dielectric filter and a GaSb photovoltaic cell array. The open-circuit voltage and short-circuit current can be measured by a multimeter, and the output power can be calculated. The effect of mass flux and the distance between the PV cell and outer wall of the combustor on the output power is also analyzed. When the flow rate of hydrogen is 4.133 g/hr and the H2/O2 ratio is 1.8, the micro-TPV system is able to deliver an electrical power output of 1.355W in a micro combustor of 0.195 cm3 in volume. The open-circuit electrical voltage and short-circuit current are 1.85 V and 1.032 amp respectively. This work makes it possible for us to replace batteries with micro-TPV systems as the power of micro mechanical devices in near future\",\"PeriodicalId\":6362,\"journal\":{\"name\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"31 1\",\"pages\":\"144-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2006.334657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了微型热光伏(micro- tpv)系统的设计与测试。该系统由SiC发射极、介电滤波器和GaSb光伏电池阵列组成。用万用表测量开路电压和短路电流,并计算输出功率。分析了质量通量和电池与燃烧室外壁的距离对输出功率的影响。当氢气流速为4.133 g/hr, H2/O2比为1.8时,微型tpv系统在0.195 cm3体积的微型燃烧室中能够提供1.355W的输出功率。开路电压为1.85 V,短路电流为1.032安培。这项工作使我们在不久的将来用微型tpv系统代替电池作为微型机械设备的动力成为可能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Conceits and Testing of a Prototype Micro Thermophotovoltaic System
The design and testing of micro thermophotovoltaic (micro-TPV) system is described in this paper. The system is made of a SiC emitter, a dielectric filter and a GaSb photovoltaic cell array. The open-circuit voltage and short-circuit current can be measured by a multimeter, and the output power can be calculated. The effect of mass flux and the distance between the PV cell and outer wall of the combustor on the output power is also analyzed. When the flow rate of hydrogen is 4.133 g/hr and the H2/O2 ratio is 1.8, the micro-TPV system is able to deliver an electrical power output of 1.355W in a micro combustor of 0.195 cm3 in volume. The open-circuit electrical voltage and short-circuit current are 1.85 V and 1.032 amp respectively. This work makes it possible for us to replace batteries with micro-TPV systems as the power of micro mechanical devices in near future
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信