一种用于车对车通信的混合传感和强化学习调度

T. Şahin, Mate Boban, R. Khalili, A. Wolisz
{"title":"一种用于车对车通信的混合传感和强化学习调度","authors":"T. Şahin, Mate Boban, R. Khalili, A. Wolisz","doi":"10.1109/IEEECONF44664.2019.9048691","DOIUrl":null,"url":null,"abstract":"Vehicle-to-vehicle (V2V) communications performance depends significantly on the approach taken to schedule the radio resources. When the infrastructure is available, so far the best performing V2V scheduling algorithms are based on centralized approach. In case there is no infrastructure, sensing the resources in a distributed manner to determine whether a specific resource is free performs well. We propose a hybrid solution, where a centralized reinforcement learning (RL) algorithm provides a candidate subset of resources, whereas a distributed sensing mechanism, running on each vehicle, makes the final resource selection. We evaluate the performance of the proposed approach in an out-of-coverage setting and show that it outperforms the state-of-the-art algorithms in highly dynamic scenarios by using the best of both worlds: RL agent provides optimized long-term resource allocations, while the distributed sensing handles temporary and unforeseen network conditions that can not be predicted effectively.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"72 1","pages":"1136-1143"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Sensing and Reinforcement Learning Scheduler for Vehicle-to-Vehicle Communications\",\"authors\":\"T. Şahin, Mate Boban, R. Khalili, A. Wolisz\",\"doi\":\"10.1109/IEEECONF44664.2019.9048691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle-to-vehicle (V2V) communications performance depends significantly on the approach taken to schedule the radio resources. When the infrastructure is available, so far the best performing V2V scheduling algorithms are based on centralized approach. In case there is no infrastructure, sensing the resources in a distributed manner to determine whether a specific resource is free performs well. We propose a hybrid solution, where a centralized reinforcement learning (RL) algorithm provides a candidate subset of resources, whereas a distributed sensing mechanism, running on each vehicle, makes the final resource selection. We evaluate the performance of the proposed approach in an out-of-coverage setting and show that it outperforms the state-of-the-art algorithms in highly dynamic scenarios by using the best of both worlds: RL agent provides optimized long-term resource allocations, while the distributed sensing handles temporary and unforeseen network conditions that can not be predicted effectively.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"72 1\",\"pages\":\"1136-1143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

车对车(V2V)通信性能在很大程度上取决于调度无线电资源的方法。当基础设施可用时,迄今为止性能最好的V2V调度算法是基于集中式方法的。在没有基础设施的情况下,以分布式方式感知资源以确定特定资源是否空闲的性能很好。我们提出了一种混合解决方案,其中集中式强化学习(RL)算法提供候选资源子集,而运行在每辆车上的分布式感知机制则进行最终的资源选择。我们评估了所提出的方法在覆盖范围之外的环境中的性能,并表明它在高度动态场景中优于最先进的算法,通过使用两者的优点:RL代理提供优化的长期资源分配,而分布式感知处理无法有效预测的临时和不可预见的网络条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Sensing and Reinforcement Learning Scheduler for Vehicle-to-Vehicle Communications
Vehicle-to-vehicle (V2V) communications performance depends significantly on the approach taken to schedule the radio resources. When the infrastructure is available, so far the best performing V2V scheduling algorithms are based on centralized approach. In case there is no infrastructure, sensing the resources in a distributed manner to determine whether a specific resource is free performs well. We propose a hybrid solution, where a centralized reinforcement learning (RL) algorithm provides a candidate subset of resources, whereas a distributed sensing mechanism, running on each vehicle, makes the final resource selection. We evaluate the performance of the proposed approach in an out-of-coverage setting and show that it outperforms the state-of-the-art algorithms in highly dynamic scenarios by using the best of both worlds: RL agent provides optimized long-term resource allocations, while the distributed sensing handles temporary and unforeseen network conditions that can not be predicted effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信