纳米mosfet中由于欧姆触点的载流子注入而导致的迁移率降低

M. Riyadi, M. Tan, Abdul Manaf Hashima, V. Arora
{"title":"纳米mosfet中由于欧姆触点的载流子注入而导致的迁移率降低","authors":"M. Riyadi, M. Tan, Abdul Manaf Hashima, V. Arora","doi":"10.1063/1.3586978","DOIUrl":null,"url":null,"abstract":"Ballistic transport is collision-free carriers drift in a conducting channel whose ballistic length L<inf>B</inf> is smaller than the scattering-limited mean free path ℓ<inf>B</inf>. In such channels, the probability of scattering is still finite. The probability that a carrier after being injected from the Ohmic contacts will undergo collision in traversing a ballistic length L<inf>B</inf> is exp (−L<inf>B</inf> /ℓ<inf>B</inf>. The probability that it will go ballistic (collision-free) is (1- exp (−L<inf>B</inf>/ ℓ<inf>B</inf>)). This modifies the traditional long-channel mobility µ<inf>∞</inf> to a size-limited mobility µ<inf>L</inf> given by [1] µ<inf>L</inf> = µ<inf>∞</inf>[1- exp(−L<inf>B</inf> / ℓ<inf>B</inf>)] The ballistic mean free path ℓ differs from the channel mean free path ℓ<inf>∞</inf> as contacts play a predominant role in the ballistic transport. The carriers are injected from the metallic contacts at a Fermi velocity ν<inf>F</inf> for which the probability of tunnelling through the metal-semiconductor contact is the highest. This Fermi velocity is 2.0 × 10<sup>6</sup> m/s for the Fermi energy of 11.6 eV for an Al contact [2]. With this injection velocity ν<inf>inj</inf> the ballistic mean free path is given by ℓ<inf>B</inf> = ℓ<inf>∞</inf> (ν<inf>inj</inf>/ ν<inf>m</inf>) where ν<inf>m</inf> is the mobility velocity appropriate to 2-D electron gas [3]. ℓ<inf>B</inf> > ℓ<inf>∞</inf> was identified in the experiments of Luskawoski et. al [4]. A pocket mean free path ℓ<inf>P</inf> was added to ℓ<inf>∞</inf> to get a ballistic mean free path ℓ<inf>B</inf> =ℓ<inf>℞</inf> +ࡁ<inf>P</inf> that is not consistent with the scattering theory for two reasons. Firstly, mean free paths from two distinct regions cannot be combined. Secondly, the inverse mean free paths are normally combined as ℓ<inf>B</inf><sup>−1</sup> = ℓ<inf>∞</inf><sup>−1</sup> + ℓ<inf>P</inf> <sup>−1</sup>","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobility diminution in a nano-MOSFET due to carrier injection from the ohmic contacts\",\"authors\":\"M. Riyadi, M. Tan, Abdul Manaf Hashima, V. Arora\",\"doi\":\"10.1063/1.3586978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ballistic transport is collision-free carriers drift in a conducting channel whose ballistic length L<inf>B</inf> is smaller than the scattering-limited mean free path ℓ<inf>B</inf>. In such channels, the probability of scattering is still finite. The probability that a carrier after being injected from the Ohmic contacts will undergo collision in traversing a ballistic length L<inf>B</inf> is exp (−L<inf>B</inf> /ℓ<inf>B</inf>. The probability that it will go ballistic (collision-free) is (1- exp (−L<inf>B</inf>/ ℓ<inf>B</inf>)). This modifies the traditional long-channel mobility µ<inf>∞</inf> to a size-limited mobility µ<inf>L</inf> given by [1] µ<inf>L</inf> = µ<inf>∞</inf>[1- exp(−L<inf>B</inf> / ℓ<inf>B</inf>)] The ballistic mean free path ℓ differs from the channel mean free path ℓ<inf>∞</inf> as contacts play a predominant role in the ballistic transport. The carriers are injected from the metallic contacts at a Fermi velocity ν<inf>F</inf> for which the probability of tunnelling through the metal-semiconductor contact is the highest. This Fermi velocity is 2.0 × 10<sup>6</sup> m/s for the Fermi energy of 11.6 eV for an Al contact [2]. With this injection velocity ν<inf>inj</inf> the ballistic mean free path is given by ℓ<inf>B</inf> = ℓ<inf>∞</inf> (ν<inf>inj</inf>/ ν<inf>m</inf>) where ν<inf>m</inf> is the mobility velocity appropriate to 2-D electron gas [3]. ℓ<inf>B</inf> > ℓ<inf>∞</inf> was identified in the experiments of Luskawoski et. al [4]. A pocket mean free path ℓ<inf>P</inf> was added to ℓ<inf>∞</inf> to get a ballistic mean free path ℓ<inf>B</inf> =ℓ<inf>℞</inf> +ࡁ<inf>P</inf> that is not consistent with the scattering theory for two reasons. Firstly, mean free paths from two distinct regions cannot be combined. Secondly, the inverse mean free paths are normally combined as ℓ<inf>B</inf><sup>−1</sup> = ℓ<inf>∞</inf><sup>−1</sup> + ℓ<inf>P</inf> <sup>−1</sup>\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3586978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3586978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弹道输运是指无碰撞载流子在弹道长度LB小于散射限制平均自由程LB的导电通道中漂移。在这样的信道中,散射的概率仍然是有限的。从欧姆接触注入的载流子在穿越弹道长度LB时发生碰撞的概率为exp(−LB / tlb)。它将成为弹道(无碰撞)的概率是(1- exp(−LB/ tlb))。这将传统的长通道迁移率μ∞修改为具有尺寸限制的迁移率μ L,由[1]μ L = μ∞[1- exp(−LB / LB)]给出。由于接触在弹道输运中起主导作用,弹道平均自由程和通道平均自由程不同。载流子以费米速度νF从金属触点注入,通过金属-半导体触点隧穿的概率最高。当Al接触的费米能量为11.6 eV时,费米速度为2.0 × 106 m/s[2]。在此注入速度νinj下,弹道平均自由程由∑B =∑∞(νinj/ νm)给出,其中νm是适合于二维电子气体的迁移速度[3]。在Luskawoski等人[4]的实验中,确定了h > h∞。将口袋平均自由路径(pocket mean free path)加入到r∞上,得到弹道平均自由路径(弹道平均自由路径),但由于两个原因与散射理论不一致。首先,两个不同区域的平均自由路径不能合并。其次,逆平均自由路径通常组合为:l_b−1 = l_∞−1 + l_p−1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobility diminution in a nano-MOSFET due to carrier injection from the ohmic contacts
Ballistic transport is collision-free carriers drift in a conducting channel whose ballistic length LB is smaller than the scattering-limited mean free path ℓB. In such channels, the probability of scattering is still finite. The probability that a carrier after being injected from the Ohmic contacts will undergo collision in traversing a ballistic length LB is exp (−LB /ℓB. The probability that it will go ballistic (collision-free) is (1- exp (−LB/ ℓB)). This modifies the traditional long-channel mobility µ to a size-limited mobility µL given by [1] µL = µ[1- exp(−LB / ℓB)] The ballistic mean free path ℓ differs from the channel mean free path ℓ as contacts play a predominant role in the ballistic transport. The carriers are injected from the metallic contacts at a Fermi velocity νF for which the probability of tunnelling through the metal-semiconductor contact is the highest. This Fermi velocity is 2.0 × 106 m/s for the Fermi energy of 11.6 eV for an Al contact [2]. With this injection velocity νinj the ballistic mean free path is given by ℓB = ℓinj/ νm) where νm is the mobility velocity appropriate to 2-D electron gas [3]. ℓB > ℓ was identified in the experiments of Luskawoski et. al [4]. A pocket mean free path ℓP was added to ℓ to get a ballistic mean free path ℓB =ℓ +ࡁP that is not consistent with the scattering theory for two reasons. Firstly, mean free paths from two distinct regions cannot be combined. Secondly, the inverse mean free paths are normally combined as ℓB−1 = ℓ−1 + ℓP −1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信