一类半线性退化椭圆型方程的可移奇点的注释

T. Horiuchi
{"title":"一类半线性退化椭圆型方程的可移奇点的注释","authors":"T. Horiuchi","doi":"10.5036/MJIU.29.31","DOIUrl":null,"url":null,"abstract":"When α=β=γ=0, this result is already established by H. Brezis and L. Veron in [BV]. They proved this result by using a comparison principle and a weak maximum principle. Although the operator in this paper is degenerate at the origin, their methods still work under some modifications. In fact we first construct a suitable super-solution, and then we derive a pointwise estimate by a weak muximum principle and Kato's inequality. As a application we will deduce that if u∈(C2(B') satisfies","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"3 1","pages":"31-39"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on removable singularities for a certain class of semilinear degenerate elliptic equations\",\"authors\":\"T. Horiuchi\",\"doi\":\"10.5036/MJIU.29.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When α=β=γ=0, this result is already established by H. Brezis and L. Veron in [BV]. They proved this result by using a comparison principle and a weak maximum principle. Although the operator in this paper is degenerate at the origin, their methods still work under some modifications. In fact we first construct a suitable super-solution, and then we derive a pointwise estimate by a weak muximum principle and Kato's inequality. As a application we will deduce that if u∈(C2(B') satisfies\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"3 1\",\"pages\":\"31-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.29.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.29.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当α=β=γ=0时,H. Brezis和L. Veron在[BV]中已经建立了这一结果。他们用比较原理和弱极大原理证明了这一结果。虽然本文的算子在原点处是简并的,但在一些修改下,它们的方法仍然有效。实际上,我们首先构造了一个合适的超解,然后利用弱极大值原理和Kato不等式推导了一个点估计。作为一个应用,我们将推导出如果u∈(C2(B')满足
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on removable singularities for a certain class of semilinear degenerate elliptic equations
When α=β=γ=0, this result is already established by H. Brezis and L. Veron in [BV]. They proved this result by using a comparison principle and a weak maximum principle. Although the operator in this paper is degenerate at the origin, their methods still work under some modifications. In fact we first construct a suitable super-solution, and then we derive a pointwise estimate by a weak muximum principle and Kato's inequality. As a application we will deduce that if u∈(C2(B') satisfies
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信