Asmari组有效厚度对原油产量的影响

Behzad Orangii, M. Riahi
{"title":"Asmari组有效厚度对原油产量的影响","authors":"Behzad Orangii, M. Riahi","doi":"10.22050/IJOGST.2021.278551.1588","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of the effective thickness of the Asmari reservoir formation zones on oil production in one of the Iranian carbonate oil fields. Effective thickness is a term that includes the total gross thickness of rocks by lithofacies for a selected wellbore. The lithology of the Asmari Formation in the studied area consists of dolomite, sandstone, lime, dolomitic-lime, sandstone-shale, and shale limestone dolomites. Based on the existing well-logs, the average shale volume, the effective arithmetic means of porosity in the gross intervals, and average water saturation or hydrocarbon-bearing increments of the studied field is calculated from well-logs. The depth interval of 2214 to 2296, in wellbore #A shows 9.6% average shale volume, 27.2% average water saturation, and 20.9% average porosity. The depth interval of 2213 to 2280, in wellbore #B, shows 6% average shale volume, 21.25% average water saturation, and 28.5% average porosity. Based on our petrophysical assessments we divide the Asmari reservoir in the studied field into eight zones. Zone 1 is made of carbonate (calcareous and dolomitic), zones 2 to 5 are mainly sandstone, zones 7 and 8 are calcareous and shale and zone 6 is a mixture of all the above-mentioned rocks. Among these eight zones, there are two main hydrocarbon productive zones. The numerical calculation of in situ oil volume showed that zone two contains 65% of oil volume in this reservoir. This zone with more than 80% of sand has the highest net hydrocarbon column.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of effective thickness of the Asmari Formation zones on oil production\",\"authors\":\"Behzad Orangii, M. Riahi\",\"doi\":\"10.22050/IJOGST.2021.278551.1588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the role of the effective thickness of the Asmari reservoir formation zones on oil production in one of the Iranian carbonate oil fields. Effective thickness is a term that includes the total gross thickness of rocks by lithofacies for a selected wellbore. The lithology of the Asmari Formation in the studied area consists of dolomite, sandstone, lime, dolomitic-lime, sandstone-shale, and shale limestone dolomites. Based on the existing well-logs, the average shale volume, the effective arithmetic means of porosity in the gross intervals, and average water saturation or hydrocarbon-bearing increments of the studied field is calculated from well-logs. The depth interval of 2214 to 2296, in wellbore #A shows 9.6% average shale volume, 27.2% average water saturation, and 20.9% average porosity. The depth interval of 2213 to 2280, in wellbore #B, shows 6% average shale volume, 21.25% average water saturation, and 28.5% average porosity. Based on our petrophysical assessments we divide the Asmari reservoir in the studied field into eight zones. Zone 1 is made of carbonate (calcareous and dolomitic), zones 2 to 5 are mainly sandstone, zones 7 and 8 are calcareous and shale and zone 6 is a mixture of all the above-mentioned rocks. Among these eight zones, there are two main hydrocarbon productive zones. The numerical calculation of in situ oil volume showed that zone two contains 65% of oil volume in this reservoir. This zone with more than 80% of sand has the highest net hydrocarbon column.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2021.278551.1588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2021.278551.1588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了伊朗某碳酸盐岩油田Asmari储层有效厚度对产量的影响。有效厚度是一个术语,包括在所选井筒中按岩相划分的岩石总厚度。研究区阿斯马里组岩性主要为白云岩、砂岩、灰岩、白云岩-灰岩、砂岩-页岩、页岩灰岩白云岩。在现有测井资料的基础上,通过测井资料计算出研究区页岩平均体积、总层段孔隙度的有效算术平均值、平均含水饱和度或含油气增量。A井2214 ~ 2296深度段平均页岩体积9.6%,平均含水饱和度27.2%,平均孔隙度20.9%。2213 ~ 2280井#B的平均页岩体积为6%,平均含水饱和度为21.25%,平均孔隙度为28.5%。根据岩石物性评价,将研究区Asmari储层划分为8个层段。带1为碳酸盐岩(钙质和白云岩),带2至5主要为砂岩,带7和8为钙质和页岩,带6为上述所有岩石的混合。在这8个区带中,主要有2个产油气区带。原位油体积数值计算表明,二区含油量占该油藏总含油量的65%。含砂量超过80%的这一层的净油气柱最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of effective thickness of the Asmari Formation zones on oil production
This paper investigates the role of the effective thickness of the Asmari reservoir formation zones on oil production in one of the Iranian carbonate oil fields. Effective thickness is a term that includes the total gross thickness of rocks by lithofacies for a selected wellbore. The lithology of the Asmari Formation in the studied area consists of dolomite, sandstone, lime, dolomitic-lime, sandstone-shale, and shale limestone dolomites. Based on the existing well-logs, the average shale volume, the effective arithmetic means of porosity in the gross intervals, and average water saturation or hydrocarbon-bearing increments of the studied field is calculated from well-logs. The depth interval of 2214 to 2296, in wellbore #A shows 9.6% average shale volume, 27.2% average water saturation, and 20.9% average porosity. The depth interval of 2213 to 2280, in wellbore #B, shows 6% average shale volume, 21.25% average water saturation, and 28.5% average porosity. Based on our petrophysical assessments we divide the Asmari reservoir in the studied field into eight zones. Zone 1 is made of carbonate (calcareous and dolomitic), zones 2 to 5 are mainly sandstone, zones 7 and 8 are calcareous and shale and zone 6 is a mixture of all the above-mentioned rocks. Among these eight zones, there are two main hydrocarbon productive zones. The numerical calculation of in situ oil volume showed that zone two contains 65% of oil volume in this reservoir. This zone with more than 80% of sand has the highest net hydrocarbon column.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信