{"title":"对给定度序列的k部图进行抽样","authors":"K. K. Kayibi, U. Samee, S. Pirzada, M. A. Khan","doi":"10.2478/ausi-2018-0010","DOIUrl":null,"url":null,"abstract":"Abstract The authors in the paper [15] presented an algorithm that generates uniformly all the bipartite realizations and the other algorithm that generates uniformly all the simple bipartite realizations whenever A is a bipartite degree sequence of a simple graph. The running time of both algorithms is 𝒪(m),where m=12∑i=1nai ${\\rm{m}} = {1 \\over 2}\\sum\\nolimits_{\\rm {i} = 1}^n {{ \\rm{a}_\\rm {i}}}$ . Let A =(A1 : A2 : ... : Ak) be a k-partite degree sequence of a simple graph, where Ai has ni entries such that ∑ni=n. In the present article, we give a generalized algorithm that generates uniformly all the k-partite realizations of A and another algorithm that generates uniformly all the simple k-partite realizations of A. The running time of both algorithms is 𝒪(m), where m=12∑i=1nai $m = {1 \\over 2}\\sum\\nolimits_{i = 1}^n {{a_i}}$ .","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"27 1","pages":"183 - 217"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling k-partite graphs with a given degree sequence\",\"authors\":\"K. K. Kayibi, U. Samee, S. Pirzada, M. A. Khan\",\"doi\":\"10.2478/ausi-2018-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The authors in the paper [15] presented an algorithm that generates uniformly all the bipartite realizations and the other algorithm that generates uniformly all the simple bipartite realizations whenever A is a bipartite degree sequence of a simple graph. The running time of both algorithms is 𝒪(m),where m=12∑i=1nai ${\\\\rm{m}} = {1 \\\\over 2}\\\\sum\\\\nolimits_{\\\\rm {i} = 1}^n {{ \\\\rm{a}_\\\\rm {i}}}$ . Let A =(A1 : A2 : ... : Ak) be a k-partite degree sequence of a simple graph, where Ai has ni entries such that ∑ni=n. In the present article, we give a generalized algorithm that generates uniformly all the k-partite realizations of A and another algorithm that generates uniformly all the simple k-partite realizations of A. The running time of both algorithms is 𝒪(m), where m=12∑i=1nai $m = {1 \\\\over 2}\\\\sum\\\\nolimits_{i = 1}^n {{a_i}}$ .\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"27 1\",\"pages\":\"183 - 217\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2018-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2018-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Sampling k-partite graphs with a given degree sequence
Abstract The authors in the paper [15] presented an algorithm that generates uniformly all the bipartite realizations and the other algorithm that generates uniformly all the simple bipartite realizations whenever A is a bipartite degree sequence of a simple graph. The running time of both algorithms is 𝒪(m),where m=12∑i=1nai ${\rm{m}} = {1 \over 2}\sum\nolimits_{\rm {i} = 1}^n {{ \rm{a}_\rm {i}}}$ . Let A =(A1 : A2 : ... : Ak) be a k-partite degree sequence of a simple graph, where Ai has ni entries such that ∑ni=n. In the present article, we give a generalized algorithm that generates uniformly all the k-partite realizations of A and another algorithm that generates uniformly all the simple k-partite realizations of A. The running time of both algorithms is 𝒪(m), where m=12∑i=1nai $m = {1 \over 2}\sum\nolimits_{i = 1}^n {{a_i}}$ .