对给定度序列的k部图进行抽样

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
K. K. Kayibi, U. Samee, S. Pirzada, M. A. Khan
{"title":"对给定度序列的k部图进行抽样","authors":"K. K. Kayibi, U. Samee, S. Pirzada, M. A. Khan","doi":"10.2478/ausi-2018-0010","DOIUrl":null,"url":null,"abstract":"Abstract The authors in the paper [15] presented an algorithm that generates uniformly all the bipartite realizations and the other algorithm that generates uniformly all the simple bipartite realizations whenever A is a bipartite degree sequence of a simple graph. The running time of both algorithms is 𝒪(m),where m=12∑i=1nai ${\\rm{m}} = {1 \\over 2}\\sum\\nolimits_{\\rm {i} = 1}^n {{ \\rm{a}_\\rm {i}}}$ . Let A =(A1 : A2 : ... : Ak) be a k-partite degree sequence of a simple graph, where Ai has ni entries such that ∑ni=n. In the present article, we give a generalized algorithm that generates uniformly all the k-partite realizations of A and another algorithm that generates uniformly all the simple k-partite realizations of A. The running time of both algorithms is 𝒪(m), where m=12∑i=1nai $m = {1 \\over 2}\\sum\\nolimits_{i = 1}^n {{a_i}}$ .","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"27 1","pages":"183 - 217"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling k-partite graphs with a given degree sequence\",\"authors\":\"K. K. Kayibi, U. Samee, S. Pirzada, M. A. Khan\",\"doi\":\"10.2478/ausi-2018-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The authors in the paper [15] presented an algorithm that generates uniformly all the bipartite realizations and the other algorithm that generates uniformly all the simple bipartite realizations whenever A is a bipartite degree sequence of a simple graph. The running time of both algorithms is 𝒪(m),where m=12∑i=1nai ${\\\\rm{m}} = {1 \\\\over 2}\\\\sum\\\\nolimits_{\\\\rm {i} = 1}^n {{ \\\\rm{a}_\\\\rm {i}}}$ . Let A =(A1 : A2 : ... : Ak) be a k-partite degree sequence of a simple graph, where Ai has ni entries such that ∑ni=n. In the present article, we give a generalized algorithm that generates uniformly all the k-partite realizations of A and another algorithm that generates uniformly all the simple k-partite realizations of A. The running time of both algorithms is 𝒪(m), where m=12∑i=1nai $m = {1 \\\\over 2}\\\\sum\\\\nolimits_{i = 1}^n {{a_i}}$ .\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"27 1\",\"pages\":\"183 - 217\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2018-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2018-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

论文[15]中提出了一种算法,当A是一个简单图的二部度序列时,它能均匀地生成所有的二部实现,另一种算法能均匀地生成所有的简单二部实现。两种算法的运行时间均为 (m),其中m=12∑i=1nai ${\rm{m}} = {1 \over 2}\sum\nolimits_{\rm {i} =1}^n {{\rm{a}_\rm {i}}}$。设A =(A1: A2:…): Ak)是一个简单图的k部度序列,其中Ai有ni个条目使得∑ni=n。在本文中,我们给出了一个统一生成a的所有k部实现的广义算法和另一个统一生成a的所有简单k部实现的算法,这两个算法的运行时间为 (m),其中m=12∑i=1nai $m = {1 \ / 2}\sum\nolimits_{i =1}^n {{a_i}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling k-partite graphs with a given degree sequence
Abstract The authors in the paper [15] presented an algorithm that generates uniformly all the bipartite realizations and the other algorithm that generates uniformly all the simple bipartite realizations whenever A is a bipartite degree sequence of a simple graph. The running time of both algorithms is 𝒪(m),where m=12∑i=1nai ${\rm{m}} = {1 \over 2}\sum\nolimits_{\rm {i} = 1}^n {{ \rm{a}_\rm {i}}}$ . Let A =(A1 : A2 : ... : Ak) be a k-partite degree sequence of a simple graph, where Ai has ni entries such that ∑ni=n. In the present article, we give a generalized algorithm that generates uniformly all the k-partite realizations of A and another algorithm that generates uniformly all the simple k-partite realizations of A. The running time of both algorithms is 𝒪(m), where m=12∑i=1nai $m = {1 \over 2}\sum\nolimits_{i = 1}^n {{a_i}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信