{"title":"奇异流形上正标量曲率度量空间的同伦不变性","authors":"B. Botvinnik, M. Walsh","doi":"10.3842/SIGMA.2021.034","DOIUrl":null,"url":null,"abstract":"In this paper we study manifolds $M_{\\Sigma}$ with fibered singularities, more specifically, a relevant space $\\Riem^{\\psc}(X_{\\Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $\\Riem^{\\psc}(X_{\\Sigma})$ is homotopy invariant under certain surgeries on $M_{\\Sigma}$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities\",\"authors\":\"B. Botvinnik, M. Walsh\",\"doi\":\"10.3842/SIGMA.2021.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study manifolds $M_{\\\\Sigma}$ with fibered singularities, more specifically, a relevant space $\\\\Riem^{\\\\psc}(X_{\\\\Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $\\\\Riem^{\\\\psc}(X_{\\\\Sigma})$ is homotopy invariant under certain surgeries on $M_{\\\\Sigma}$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2021.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities
In this paper we study manifolds $M_{\Sigma}$ with fibered singularities, more specifically, a relevant space $\Riem^{\psc}(X_{\Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $\Riem^{\psc}(X_{\Sigma})$ is homotopy invariant under certain surgeries on $M_{\Sigma}$.