{"title":"数域中的根系统","authors":"V. Popov, Y. Zarhin","doi":"10.1512/IUMJ.2021.70.8257","DOIUrl":null,"url":null,"abstract":"We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\\mathcal L(K)$ generated by ${\\rm Aut} (K)$ and multiplications by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are isomorphic to a subgroup of $\\mathcal L(K)$ for a number field $K$ of degree $n$ over $\\mathbb Q$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Root systems in number fields\",\"authors\":\"V. Popov, Y. Zarhin\",\"doi\":\"10.1512/IUMJ.2021.70.8257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\\\\mathcal L(K)$ generated by ${\\\\rm Aut} (K)$ and multiplications by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are isomorphic to a subgroup of $\\\\mathcal L(K)$ for a number field $K$ of degree $n$ over $\\\\mathbb Q$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1512/IUMJ.2021.70.8257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/IUMJ.2021.70.8257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\mathcal L(K)$ generated by ${\rm Aut} (K)$ and multiplications by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are isomorphic to a subgroup of $\mathcal L(K)$ for a number field $K$ of degree $n$ over $\mathbb Q$.