数域中的根系统

V. Popov, Y. Zarhin
{"title":"数域中的根系统","authors":"V. Popov, Y. Zarhin","doi":"10.1512/IUMJ.2021.70.8257","DOIUrl":null,"url":null,"abstract":"We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\\mathcal L(K)$ generated by ${\\rm Aut} (K)$ and multiplications by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are isomorphic to a subgroup of $\\mathcal L(K)$ for a number field $K$ of degree $n$ over $\\mathbb Q$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Root systems in number fields\",\"authors\":\"V. Popov, Y. Zarhin\",\"doi\":\"10.1512/IUMJ.2021.70.8257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\\\\mathcal L(K)$ generated by ${\\\\rm Aut} (K)$ and multiplications by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are isomorphic to a subgroup of $\\\\mathcal L(K)$ for a number field $K$ of degree $n$ over $\\\\mathbb Q$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1512/IUMJ.2021.70.8257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/IUMJ.2021.70.8257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们在数域$K$的整数环中对根系$R$的类型进行分类,使得Weyl群$W(R)$位于由${\rm Aut} (K)$和乘以$K^*$的元素所生成的组$\mathcal L(K)$中。我们还分类了秩$n$的根系统的Weyl群,这些根系统同构于阶$n$ / $\mathbb Q$的数域$K$的子群$\mathcal L(K)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root systems in number fields
We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\mathcal L(K)$ generated by ${\rm Aut} (K)$ and multiplications by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are isomorphic to a subgroup of $\mathcal L(K)$ for a number field $K$ of degree $n$ over $\mathbb Q$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信