纳米晶FeAl的结构、强度和韧性

M.A Morris-Muñoz , A Dodge , D.G Morris
{"title":"纳米晶FeAl的结构、强度和韧性","authors":"M.A Morris-Muñoz ,&nbsp;A Dodge ,&nbsp;D.G Morris","doi":"10.1016/S0965-9773(99)00385-2","DOIUrl":null,"url":null,"abstract":"<div><p>Refining grain size to the nanocrystalline level has been suggested as a way of improving strength while enhancing ductility and toughness. In the present study, nanocrystalline bulk FeAl has been prepared by mechanical alloying and hot forging<span><span>. Powders quickly reach a state of partial order during milling, and low temperature annealing is sufficient to chemically homogenise and give full order. Contamination during milling leads to the formation of carbide and oxide particles, which stabilise fine grains during heating. Bulk materials show grain sizes of 20nm to 100nm depending on the consolidation temperature. Hardness and compression strength show little change over this grain size range. </span>Fracture toughness stays high down to moderately small grain sizes, falling only for consolidation at the lowest temperatures. There appears to be a reasonable range of fine grain sizes (40–100nm) where good interparticle bonding and high densities can be achieved leading to good strength and toughness.</span></p></div>","PeriodicalId":18878,"journal":{"name":"Nanostructured Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0965-9773(99)00385-2","citationCount":"85","resultStr":"{\"title\":\"Structure, strength and toughness of nanocrystalline FeAl\",\"authors\":\"M.A Morris-Muñoz ,&nbsp;A Dodge ,&nbsp;D.G Morris\",\"doi\":\"10.1016/S0965-9773(99)00385-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Refining grain size to the nanocrystalline level has been suggested as a way of improving strength while enhancing ductility and toughness. In the present study, nanocrystalline bulk FeAl has been prepared by mechanical alloying and hot forging<span><span>. Powders quickly reach a state of partial order during milling, and low temperature annealing is sufficient to chemically homogenise and give full order. Contamination during milling leads to the formation of carbide and oxide particles, which stabilise fine grains during heating. Bulk materials show grain sizes of 20nm to 100nm depending on the consolidation temperature. Hardness and compression strength show little change over this grain size range. </span>Fracture toughness stays high down to moderately small grain sizes, falling only for consolidation at the lowest temperatures. There appears to be a reasonable range of fine grain sizes (40–100nm) where good interparticle bonding and high densities can be achieved leading to good strength and toughness.</span></p></div>\",\"PeriodicalId\":18878,\"journal\":{\"name\":\"Nanostructured Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0965-9773(99)00385-2\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanostructured Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965977399003852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanostructured Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965977399003852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

将晶粒细化到纳米晶水平被认为是一种提高强度同时增强延展性和韧性的方法。本研究采用机械合金化和热锻法制备了纳米晶块状FeAl。粉末在碾磨过程中迅速达到部分有序状态,低温退火足以使化学均匀化并使其完全有序。铣削过程中的污染导致碳化物和氧化物颗粒的形成,在加热过程中使细晶粒稳定。根据固结温度的不同,块状材料的晶粒尺寸为20nm ~ 100nm。硬度和抗压强度在此晶粒尺寸范围内变化不大。断裂韧性在中等小晶粒尺寸下保持较高,仅在最低温度下凝固。在一个合理的细晶粒尺寸范围内(40-100nm),可以实现良好的颗粒间结合和高密度,从而获得良好的强度和韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure, strength and toughness of nanocrystalline FeAl

Refining grain size to the nanocrystalline level has been suggested as a way of improving strength while enhancing ductility and toughness. In the present study, nanocrystalline bulk FeAl has been prepared by mechanical alloying and hot forging. Powders quickly reach a state of partial order during milling, and low temperature annealing is sufficient to chemically homogenise and give full order. Contamination during milling leads to the formation of carbide and oxide particles, which stabilise fine grains during heating. Bulk materials show grain sizes of 20nm to 100nm depending on the consolidation temperature. Hardness and compression strength show little change over this grain size range. Fracture toughness stays high down to moderately small grain sizes, falling only for consolidation at the lowest temperatures. There appears to be a reasonable range of fine grain sizes (40–100nm) where good interparticle bonding and high densities can be achieved leading to good strength and toughness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信