PMThreads:利用版本控制的影子副本的持久内存线程

Zhenwei Wu, Kai Lu, A. Nisbet, Wen-zhe Zhang, M. Luján
{"title":"PMThreads:利用版本控制的影子副本的持久内存线程","authors":"Zhenwei Wu, Kai Lu, A. Nisbet, Wen-zhe Zhang, M. Luján","doi":"10.1145/3385412.3386000","DOIUrl":null,"url":null,"abstract":"Byte-addressable non-volatile memory (NVM) makes it possible to perform fast in-memory accesses to persistent data using standard load/store processor instructions. Some approaches for NVM are based on durable memory transactions and provide a persistent programming paradigm. However, they cannot be applied to existing multi-threaded applications without extensive source code modifications. Durable transactions typically rely on logging to enforce failure-atomic commits that include additional writes to NVM and considerable ordering overheads. This paper presents PMThreads, a novel user-space runtime that provides transparent failure-atomicity for lock-based parallel programs. A shadow DRAM page is used to buffer application writes for efficient propagation to a dual-copy NVM persistent storage framework during a global quiescent state. In this state, the working NVM copy and the crash-consistent copy of each page are atomically updated, and their roles are switched. A global quiescent state is entered at timed intervals by intercepting pthread lock acquire and release operations to ensure that no thread holds a lock to persistent data. Running on a dual-socket system with 20 cores, we show that PMThreads substantially outperforms the state-of-the-art Atlas, Mnemosyne and NVthreads systems for lock-based benchmarks (Phoenix, PARSEC benchmarks, and microbenchmark stress tests). Using Memcached, we also investigate the scalability of PMThreads and the effect of different time intervals for the quiescent state.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"PMThreads: persistent memory threads harnessing versioned shadow copies\",\"authors\":\"Zhenwei Wu, Kai Lu, A. Nisbet, Wen-zhe Zhang, M. Luján\",\"doi\":\"10.1145/3385412.3386000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Byte-addressable non-volatile memory (NVM) makes it possible to perform fast in-memory accesses to persistent data using standard load/store processor instructions. Some approaches for NVM are based on durable memory transactions and provide a persistent programming paradigm. However, they cannot be applied to existing multi-threaded applications without extensive source code modifications. Durable transactions typically rely on logging to enforce failure-atomic commits that include additional writes to NVM and considerable ordering overheads. This paper presents PMThreads, a novel user-space runtime that provides transparent failure-atomicity for lock-based parallel programs. A shadow DRAM page is used to buffer application writes for efficient propagation to a dual-copy NVM persistent storage framework during a global quiescent state. In this state, the working NVM copy and the crash-consistent copy of each page are atomically updated, and their roles are switched. A global quiescent state is entered at timed intervals by intercepting pthread lock acquire and release operations to ensure that no thread holds a lock to persistent data. Running on a dual-socket system with 20 cores, we show that PMThreads substantially outperforms the state-of-the-art Atlas, Mnemosyne and NVthreads systems for lock-based benchmarks (Phoenix, PARSEC benchmarks, and microbenchmark stress tests). Using Memcached, we also investigate the scalability of PMThreads and the effect of different time intervals for the quiescent state.\",\"PeriodicalId\":20580,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385412.3386000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

字节可寻址非易失性内存(NVM)使得使用标准加载/存储处理器指令在内存中对持久数据执行快速访问成为可能。NVM的一些方法基于持久内存事务,并提供持久的编程范例。但是,如果不大量修改源代码,它们就不能应用于现有的多线程应用程序。持久事务通常依赖于日志记录来强制执行故障原子提交,其中包括对NVM的额外写操作和相当大的排序开销。本文提出了一种新的用户空间运行时PMThreads,它为基于锁的并行程序提供透明的故障原子性。影子DRAM页用于缓冲应用程序写入,以便在全局静态状态期间有效地传播到双副本NVM持久存储框架。在这种状态下,自动更新每个页面的工作NVM副本和崩溃一致副本,并切换它们的角色。通过拦截pthread锁获取和释放操作,以确保没有线程持有持久数据的锁,以定时间隔进入全局静态状态。在一个20核的双插座系统上运行,我们发现PMThreads在基于锁的基准测试(Phoenix、PARSEC基准测试和微基准压力测试)中大大优于最先进的Atlas、Mnemosyne和NVthreads系统。使用Memcached,我们还研究了pmthread的可伸缩性以及不同时间间隔对静态状态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMThreads: persistent memory threads harnessing versioned shadow copies
Byte-addressable non-volatile memory (NVM) makes it possible to perform fast in-memory accesses to persistent data using standard load/store processor instructions. Some approaches for NVM are based on durable memory transactions and provide a persistent programming paradigm. However, they cannot be applied to existing multi-threaded applications without extensive source code modifications. Durable transactions typically rely on logging to enforce failure-atomic commits that include additional writes to NVM and considerable ordering overheads. This paper presents PMThreads, a novel user-space runtime that provides transparent failure-atomicity for lock-based parallel programs. A shadow DRAM page is used to buffer application writes for efficient propagation to a dual-copy NVM persistent storage framework during a global quiescent state. In this state, the working NVM copy and the crash-consistent copy of each page are atomically updated, and their roles are switched. A global quiescent state is entered at timed intervals by intercepting pthread lock acquire and release operations to ensure that no thread holds a lock to persistent data. Running on a dual-socket system with 20 cores, we show that PMThreads substantially outperforms the state-of-the-art Atlas, Mnemosyne and NVthreads systems for lock-based benchmarks (Phoenix, PARSEC benchmarks, and microbenchmark stress tests). Using Memcached, we also investigate the scalability of PMThreads and the effect of different time intervals for the quiescent state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信