{"title":"SC与LOGDCFL之间:对数空间确定性辅助深度k存储自动机所接受的语言族","authors":"T. Yamakami","doi":"10.1080/23799927.2023.2166872","DOIUrl":null,"url":null,"abstract":"The closure of deterministic context-free languages under logarithmic-space many-one reductions ( -m-reductions), known as LOGDCFL, has been studied in depth from an aspect of parallel computability because it is nicely situated between and . By replacing a memory device of pushdown automata with an access-controlled storage tape, we introduce a computational model of one-way deterministic depth-k storage automata (k-sda's) whose tape cells are freely modified during the first k accesses and then become blank forever. These k-sda's naturally induce the language family . Similarly to , we study the closure of all languages in under -m-reductions. We demonstrate that by significantly extending Cook's early result (1979) of . The entire hierarch of for all therefore lies between and . As an immediate consequence, we obtain the same simulation bounds for Hibbard's limited automata. We further characterize in terms of a new machine model, called logarithmic-space deterministic auxiliary depth-k storage automata that run in polynomial time. These machines are as powerful as a polynomial-time two-way multi-head deterministic depth-k storage automata. We also provide a ‘generic’ -complete language under -m-reductions by constructing a two-way universal simulator working for all k-sda's.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Between SC and LOGDCFL: families of languages accepted by logarithmic-space deterministic auxiliary depth-k storage automata\",\"authors\":\"T. Yamakami\",\"doi\":\"10.1080/23799927.2023.2166872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The closure of deterministic context-free languages under logarithmic-space many-one reductions ( -m-reductions), known as LOGDCFL, has been studied in depth from an aspect of parallel computability because it is nicely situated between and . By replacing a memory device of pushdown automata with an access-controlled storage tape, we introduce a computational model of one-way deterministic depth-k storage automata (k-sda's) whose tape cells are freely modified during the first k accesses and then become blank forever. These k-sda's naturally induce the language family . Similarly to , we study the closure of all languages in under -m-reductions. We demonstrate that by significantly extending Cook's early result (1979) of . The entire hierarch of for all therefore lies between and . As an immediate consequence, we obtain the same simulation bounds for Hibbard's limited automata. We further characterize in terms of a new machine model, called logarithmic-space deterministic auxiliary depth-k storage automata that run in polynomial time. These machines are as powerful as a polynomial-time two-way multi-head deterministic depth-k storage automata. We also provide a ‘generic’ -complete language under -m-reductions by constructing a two-way universal simulator working for all k-sda's.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2023.2166872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2023.2166872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Between SC and LOGDCFL: families of languages accepted by logarithmic-space deterministic auxiliary depth-k storage automata
The closure of deterministic context-free languages under logarithmic-space many-one reductions ( -m-reductions), known as LOGDCFL, has been studied in depth from an aspect of parallel computability because it is nicely situated between and . By replacing a memory device of pushdown automata with an access-controlled storage tape, we introduce a computational model of one-way deterministic depth-k storage automata (k-sda's) whose tape cells are freely modified during the first k accesses and then become blank forever. These k-sda's naturally induce the language family . Similarly to , we study the closure of all languages in under -m-reductions. We demonstrate that by significantly extending Cook's early result (1979) of . The entire hierarch of for all therefore lies between and . As an immediate consequence, we obtain the same simulation bounds for Hibbard's limited automata. We further characterize in terms of a new machine model, called logarithmic-space deterministic auxiliary depth-k storage automata that run in polynomial time. These machines are as powerful as a polynomial-time two-way multi-head deterministic depth-k storage automata. We also provide a ‘generic’ -complete language under -m-reductions by constructing a two-way universal simulator working for all k-sda's.