{"title":"带边界流形上离散群作用椭圆问题的同伦分类","authors":"A. Savin, B. Sternin","doi":"10.13108/2016-8-3-122","DOIUrl":null,"url":null,"abstract":"Given an action of a discrete group G on a smooth compact manifold M with a boundary, we consider a class of operators generated by pseudodifferential operators on M and shift operators associated with the group action. For elliptic operators in this class, we obtain a classification up to stable homotopies and show that the group of stable homotopy classes of such problems is isomorphic to the K-group of the crossed product of the algebra of continuous functions on the cotangent bundle over the interior of the manifold and the group G acting on this algebra by automorphisms.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"15 1","pages":"122-129"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary\",\"authors\":\"A. Savin, B. Sternin\",\"doi\":\"10.13108/2016-8-3-122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an action of a discrete group G on a smooth compact manifold M with a boundary, we consider a class of operators generated by pseudodifferential operators on M and shift operators associated with the group action. For elliptic operators in this class, we obtain a classification up to stable homotopies and show that the group of stable homotopy classes of such problems is isomorphic to the K-group of the crossed product of the algebra of continuous functions on the cotangent bundle over the interior of the manifold and the group G acting on this algebra by automorphisms.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"15 1\",\"pages\":\"122-129\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2016-8-3-122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-3-122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary
Given an action of a discrete group G on a smooth compact manifold M with a boundary, we consider a class of operators generated by pseudodifferential operators on M and shift operators associated with the group action. For elliptic operators in this class, we obtain a classification up to stable homotopies and show that the group of stable homotopy classes of such problems is isomorphic to the K-group of the crossed product of the algebra of continuous functions on the cotangent bundle over the interior of the manifold and the group G acting on this algebra by automorphisms.