利用回弹锤技术评价风化石灰岩壁的相关模型

IF 0.9 Q4 ENGINEERING, CIVIL
Tamer Eljufout, N. Hadadin, A. Haddad, Fadi Alhomaidat
{"title":"利用回弹锤技术评价风化石灰岩壁的相关模型","authors":"Tamer Eljufout, N. Hadadin, A. Haddad, Fadi Alhomaidat","doi":"10.1080/13287982.2022.2087845","DOIUrl":null,"url":null,"abstract":"ABSTRACT Rebound hammer (RH) is a non-destructive testing (NDT) technique that has a significant role in the field assessment of ancient and modern buildings made of natural stones. This study aims to establish correlation models for utilising the RH technique in evaluating weathered limestone walls and to provide an efficient in-situ assessment. Compressive and RH tests were conducted for four types of building limestones: Ruwaished Hard, Ruwaished Soft, Hallabat, and Ma’an, including nine specimens for each type with dimensions of 15 × 15 × 15 cm and two real-scale weathered stone walls with dimensions of 100 × 200 cm. Based on the experimental tests, regression analyses were conducted between the RH values, compressive strength, and modulus of elasticity. The established power-based correlation models had high coefficients of determination. For validation purposes, real-scale weathered stone walls were evaluated using the RH test, the mechanical properties were underestimated and affected by Stone Units’ surface roughness and weathering degrees. However, the established models give conservative estimations and can be used with sufficient accuracy for an in-situ evaluation of limestone structures. Further investigations are necessary to enhance models’ validity for various stone types by combining other NDTs and considering different weathering factors.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlation models for utilising rebound hammer technique in evaluating weathered limestone walls\",\"authors\":\"Tamer Eljufout, N. Hadadin, A. Haddad, Fadi Alhomaidat\",\"doi\":\"10.1080/13287982.2022.2087845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Rebound hammer (RH) is a non-destructive testing (NDT) technique that has a significant role in the field assessment of ancient and modern buildings made of natural stones. This study aims to establish correlation models for utilising the RH technique in evaluating weathered limestone walls and to provide an efficient in-situ assessment. Compressive and RH tests were conducted for four types of building limestones: Ruwaished Hard, Ruwaished Soft, Hallabat, and Ma’an, including nine specimens for each type with dimensions of 15 × 15 × 15 cm and two real-scale weathered stone walls with dimensions of 100 × 200 cm. Based on the experimental tests, regression analyses were conducted between the RH values, compressive strength, and modulus of elasticity. The established power-based correlation models had high coefficients of determination. For validation purposes, real-scale weathered stone walls were evaluated using the RH test, the mechanical properties were underestimated and affected by Stone Units’ surface roughness and weathering degrees. However, the established models give conservative estimations and can be used with sufficient accuracy for an in-situ evaluation of limestone structures. Further investigations are necessary to enhance models’ validity for various stone types by combining other NDTs and considering different weathering factors.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2022.2087845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2022.2087845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

反弹锤(RH)是一种无损检测(NDT)技术,在古代和现代天然石材建筑的现场评估中发挥着重要作用。本研究旨在建立利用RH技术评价风化石灰岩墙体的相关模型,并提供有效的现场评估。对ruwawashed Hard、ruwawashed Soft、Hallabat和Ma 'an四种建筑石灰石进行了压缩和RH试验,每种石灰石9个试件,尺寸为15 × 15 × 15 cm, 2个实尺风化石墙,尺寸为100 × 200 cm。在试验基础上,对RH值、抗压强度和弹性模量进行回归分析。所建立的基于权力的相关模型具有较高的决定系数。为了验证目的,使用RH测试对真实尺寸的风化石墙进行了评估,力学性能被低估,并受到石头单元表面粗糙度和风化程度的影响。然而,所建立的模型给出了保守的估计,可以有足够的精度用于石灰岩结构的原位评估。结合其他ndt并考虑不同的风化因素,进一步提高模型对不同石材类型的有效性是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation models for utilising rebound hammer technique in evaluating weathered limestone walls
ABSTRACT Rebound hammer (RH) is a non-destructive testing (NDT) technique that has a significant role in the field assessment of ancient and modern buildings made of natural stones. This study aims to establish correlation models for utilising the RH technique in evaluating weathered limestone walls and to provide an efficient in-situ assessment. Compressive and RH tests were conducted for four types of building limestones: Ruwaished Hard, Ruwaished Soft, Hallabat, and Ma’an, including nine specimens for each type with dimensions of 15 × 15 × 15 cm and two real-scale weathered stone walls with dimensions of 100 × 200 cm. Based on the experimental tests, regression analyses were conducted between the RH values, compressive strength, and modulus of elasticity. The established power-based correlation models had high coefficients of determination. For validation purposes, real-scale weathered stone walls were evaluated using the RH test, the mechanical properties were underestimated and affected by Stone Units’ surface roughness and weathering degrees. However, the established models give conservative estimations and can be used with sufficient accuracy for an in-situ evaluation of limestone structures. Further investigations are necessary to enhance models’ validity for various stone types by combining other NDTs and considering different weathering factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信