白纸上的字条

IF 0.6 Q3 MATHEMATICS
P. Danchev
{"title":"白纸上的字条","authors":"P. Danchev","doi":"10.2478/ausm-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract We study a special kind of nil-clean rings, namely those nil-clean rings whose nilpotent elements are difference of two “left-right symmetric” idempotents, and prove that in some various cases they are strongly π-regular. We also show that all nil-clean rings having cyclic unit 2-groups are themselves strongly nil-clean of characteristic 2 (and thus they are again strongly π-regular).","PeriodicalId":43054,"journal":{"name":"Acta Universitatis Sapientiae-Mathematica","volume":"31 1","pages":"287 - 293"},"PeriodicalIF":0.6000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on nil-clean rings\",\"authors\":\"P. Danchev\",\"doi\":\"10.2478/ausm-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a special kind of nil-clean rings, namely those nil-clean rings whose nilpotent elements are difference of two “left-right symmetric” idempotents, and prove that in some various cases they are strongly π-regular. We also show that all nil-clean rings having cyclic unit 2-groups are themselves strongly nil-clean of characteristic 2 (and thus they are again strongly π-regular).\",\"PeriodicalId\":43054,\"journal\":{\"name\":\"Acta Universitatis Sapientiae-Mathematica\",\"volume\":\"31 1\",\"pages\":\"287 - 293\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae-Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae-Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了一类特殊的零干净环,即幂零元是两个“左右对称”幂等元之差的零干净环,并证明了在某些情况下它们是强π正则的。我们还证明了所有具有环单位2群的零净环本身都具有特征2的强零净性(因此它们又是强π正则)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on nil-clean rings
Abstract We study a special kind of nil-clean rings, namely those nil-clean rings whose nilpotent elements are difference of two “left-right symmetric” idempotents, and prove that in some various cases they are strongly π-regular. We also show that all nil-clean rings having cyclic unit 2-groups are themselves strongly nil-clean of characteristic 2 (and thus they are again strongly π-regular).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: The Acta Universitatis Sapientiae Mathematica publishes original papers in English in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信