用二进制数证明Collatz猜想

IF 0.2 Q4 MATHEMATICS
Olinto de Oliveira Santos
{"title":"用二进制数证明Collatz猜想","authors":"Olinto de Oliveira Santos","doi":"10.11648/J.PAMJ.20180705.12","DOIUrl":null,"url":null,"abstract":"The objective of this article is to demonstrate the Collatz Conjecture through the Sets and Binary Numbers Theory, in this manner: 2n + 2n-1+...1. This study shows that there are subsequences of odd numbers within the Collatz sequences, and that by proving the proposition is true for these subsequences, it is subsequently proven that the entire proposition is correct. It is also proven that a sequence which begins with a natural number is generated by a set of operations: Multiplication by 3, addition of 1 and division by 2n. This set of operations shall be called “Movement” in this study, and may be increasing when n=1, and decreasing for n ≥ 2. The numbers in 2n form generate decreasing sequences in which the 3n+1 operation does not occur. One of the important discoveries is how to generate numbers in which the 3n+1 operation only occurs once and how to generate numbers with a minimum quantity of increasing movements that are the numbers of greater “orbits” (Longer sequences that take longer to reach the number one). The conclusion is that, as the decreasing numbers dominate as compared to the increasing ones, the statement that the sequence is always going to reach the number 1 is true.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2018-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proving the Collatz Conjecture with Binaries Numbers\",\"authors\":\"Olinto de Oliveira Santos\",\"doi\":\"10.11648/J.PAMJ.20180705.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this article is to demonstrate the Collatz Conjecture through the Sets and Binary Numbers Theory, in this manner: 2n + 2n-1+...1. This study shows that there are subsequences of odd numbers within the Collatz sequences, and that by proving the proposition is true for these subsequences, it is subsequently proven that the entire proposition is correct. It is also proven that a sequence which begins with a natural number is generated by a set of operations: Multiplication by 3, addition of 1 and division by 2n. This set of operations shall be called “Movement” in this study, and may be increasing when n=1, and decreasing for n ≥ 2. The numbers in 2n form generate decreasing sequences in which the 3n+1 operation does not occur. One of the important discoveries is how to generate numbers in which the 3n+1 operation only occurs once and how to generate numbers with a minimum quantity of increasing movements that are the numbers of greater “orbits” (Longer sequences that take longer to reach the number one). The conclusion is that, as the decreasing numbers dominate as compared to the increasing ones, the statement that the sequence is always going to reach the number 1 is true.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2018-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20180705.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20180705.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是通过集合和二进制数理论证明Collatz猜想,以这种方式:2n + 2n-1+…1。本研究表明,在Collatz序列中存在奇数子序列,并且通过证明这些子序列的命题为真,随后证明整个命题是正确的。还证明了以自然数开头的数列是由3的乘法、1的加法、2n的除法等一系列运算生成的。这组操作在本研究中称为“移动”,当n=1时可能会增加,当n≥2时可能会减少。2n形式的数字生成降序序列,其中不发生3n+1运算。其中一个重要的发现是如何生成3n+1操作只发生一次的数字,以及如何生成具有最小数量的增加运动的数字,这些运动是更大的“轨道”的数量(更长的序列需要更长的时间才能到达第一)。结论是,递减的数比递增的数占主导地位,因此数列总是趋于1的说法是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proving the Collatz Conjecture with Binaries Numbers
The objective of this article is to demonstrate the Collatz Conjecture through the Sets and Binary Numbers Theory, in this manner: 2n + 2n-1+...1. This study shows that there are subsequences of odd numbers within the Collatz sequences, and that by proving the proposition is true for these subsequences, it is subsequently proven that the entire proposition is correct. It is also proven that a sequence which begins with a natural number is generated by a set of operations: Multiplication by 3, addition of 1 and division by 2n. This set of operations shall be called “Movement” in this study, and may be increasing when n=1, and decreasing for n ≥ 2. The numbers in 2n form generate decreasing sequences in which the 3n+1 operation does not occur. One of the important discoveries is how to generate numbers in which the 3n+1 operation only occurs once and how to generate numbers with a minimum quantity of increasing movements that are the numbers of greater “orbits” (Longer sequences that take longer to reach the number one). The conclusion is that, as the decreasing numbers dominate as compared to the increasing ones, the statement that the sequence is always going to reach the number 1 is true.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信