{"title":"(f²n−1,ξstd)不是完全可填充的形式≠2k","authors":"Zheng Zhou","doi":"10.2140/gt.2021.25.3013","DOIUrl":null,"url":null,"abstract":"We prove that $(\\mathbb{RP}^{2n-1},\\xi_{std})$ is not exactly fillable for any $n\\ne 2^k$ and there exist strongly fillable but not exactly fillable contact manifolds for all dimension $\\ge 5$.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"67 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"(ℝℙ2n−1,ξstd) is not exactly fillable for\\nn≠2k\",\"authors\":\"Zheng Zhou\",\"doi\":\"10.2140/gt.2021.25.3013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that $(\\\\mathbb{RP}^{2n-1},\\\\xi_{std})$ is not exactly fillable for any $n\\\\ne 2^k$ and there exist strongly fillable but not exactly fillable contact manifolds for all dimension $\\\\ge 5$.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.3013\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.3013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that $(\mathbb{RP}^{2n-1},\xi_{std})$ is not exactly fillable for any $n\ne 2^k$ and there exist strongly fillable but not exactly fillable contact manifolds for all dimension $\ge 5$.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.