基于1到m次谐波的高精度频率检测方法

Jun Shimokawatoko, H. Mizutani, K. Tajima, Mori Kazutomi
{"title":"基于1到m次谐波的高精度频率检测方法","authors":"Jun Shimokawatoko, H. Mizutani, K. Tajima, Mori Kazutomi","doi":"10.23919/EUMC.2018.8541804","DOIUrl":null,"url":null,"abstract":"This paper proposes the high Accuracy frequency detection method by using 1 to mthharmonics. In the proposed method, frequencies of harmonics are detected, and the sum of them is divided by the sum of these orders. The proposed method improves the frequency detection accuracy by $(\\mathrm{m}+1)/(2\\sqrt{\\mathrm{m}})$ as compared with the conventional method using only the mthharmonic. The improvement of the frequency detection accuracy is derived from formulation and is confirmed by simulation and measurement results.","PeriodicalId":6472,"journal":{"name":"2018 48th European Microwave Conference (EuMC)","volume":"64 1","pages":"724-727"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Accuracy Frequency Detection Method Using 1 to mthHarmonics\",\"authors\":\"Jun Shimokawatoko, H. Mizutani, K. Tajima, Mori Kazutomi\",\"doi\":\"10.23919/EUMC.2018.8541804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the high Accuracy frequency detection method by using 1 to mthharmonics. In the proposed method, frequencies of harmonics are detected, and the sum of them is divided by the sum of these orders. The proposed method improves the frequency detection accuracy by $(\\\\mathrm{m}+1)/(2\\\\sqrt{\\\\mathrm{m}})$ as compared with the conventional method using only the mthharmonic. The improvement of the frequency detection accuracy is derived from formulation and is confirmed by simulation and measurement results.\",\"PeriodicalId\":6472,\"journal\":{\"name\":\"2018 48th European Microwave Conference (EuMC)\",\"volume\":\"64 1\",\"pages\":\"724-727\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 48th European Microwave Conference (EuMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMC.2018.8541804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 48th European Microwave Conference (EuMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2018.8541804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用1次谐波进行高精度频率检测的方法。在该方法中,检测谐波的频率,并将它们的和除以这些阶数的和。与仅使用次谐波的传统方法相比,该方法提高了$(\mathrm{m}+1)/(2\sqrt{\mathrm{m}})$的频率检测精度。该方法提高了频率检测精度,并通过仿真和测量结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Accuracy Frequency Detection Method Using 1 to mthHarmonics
This paper proposes the high Accuracy frequency detection method by using 1 to mthharmonics. In the proposed method, frequencies of harmonics are detected, and the sum of them is divided by the sum of these orders. The proposed method improves the frequency detection accuracy by $(\mathrm{m}+1)/(2\sqrt{\mathrm{m}})$ as compared with the conventional method using only the mthharmonic. The improvement of the frequency detection accuracy is derived from formulation and is confirmed by simulation and measurement results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信