Huining Bai, Lily Li, Zhen Ji, Cong Wang, Weijia Wen
{"title":"纳米材料的光诱导抗肿瘤和抗菌作用","authors":"Huining Bai, Lily Li, Zhen Ji, Cong Wang, Weijia Wen","doi":"10.14800/CCM.1606","DOIUrl":null,"url":null,"abstract":"The photoinduced effects of nanomaterials encompass several incredibly hot research topics, including the photoelectric, photothermal (PT) and photochemical effects. The PT effect arises from the synergistic effect between light irradiation and heat diffusion and has potential uses in cancer therapy and antimicrobial materials. Meanwhile, the photo-Fenton (PF) reaction is a typical photochemical reaction that has become an important method for combating environmental waste and organisms. Here, the development of the PT effect and PF reaction of nanoparticles (NPs) has been reviewed. Considerable attention has been paid to the tremendous wide range of nanomaterial types, such as oxide/sulfide, carbon-based NPs and metallic NPs, that can provide a photoheat or photochemical response and for determining the optimal dose for each material. The main focus of this review is the development and physicochemical mechanisms of each classical compound type as well as the application of photoresponsive nanomaterials in therapy and disinfection.","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoinduced antitumor and antimicrobial effects of nanomaterials\",\"authors\":\"Huining Bai, Lily Li, Zhen Ji, Cong Wang, Weijia Wen\",\"doi\":\"10.14800/CCM.1606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photoinduced effects of nanomaterials encompass several incredibly hot research topics, including the photoelectric, photothermal (PT) and photochemical effects. The PT effect arises from the synergistic effect between light irradiation and heat diffusion and has potential uses in cancer therapy and antimicrobial materials. Meanwhile, the photo-Fenton (PF) reaction is a typical photochemical reaction that has become an important method for combating environmental waste and organisms. Here, the development of the PT effect and PF reaction of nanoparticles (NPs) has been reviewed. Considerable attention has been paid to the tremendous wide range of nanomaterial types, such as oxide/sulfide, carbon-based NPs and metallic NPs, that can provide a photoheat or photochemical response and for determining the optimal dose for each material. The main focus of this review is the development and physicochemical mechanisms of each classical compound type as well as the application of photoresponsive nanomaterials in therapy and disinfection.\",\"PeriodicalId\":9576,\"journal\":{\"name\":\"Cancer cell & microenvironment\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer cell & microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/CCM.1606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/CCM.1606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photoinduced antitumor and antimicrobial effects of nanomaterials
The photoinduced effects of nanomaterials encompass several incredibly hot research topics, including the photoelectric, photothermal (PT) and photochemical effects. The PT effect arises from the synergistic effect between light irradiation and heat diffusion and has potential uses in cancer therapy and antimicrobial materials. Meanwhile, the photo-Fenton (PF) reaction is a typical photochemical reaction that has become an important method for combating environmental waste and organisms. Here, the development of the PT effect and PF reaction of nanoparticles (NPs) has been reviewed. Considerable attention has been paid to the tremendous wide range of nanomaterial types, such as oxide/sulfide, carbon-based NPs and metallic NPs, that can provide a photoheat or photochemical response and for determining the optimal dose for each material. The main focus of this review is the development and physicochemical mechanisms of each classical compound type as well as the application of photoresponsive nanomaterials in therapy and disinfection.