Michaelis-Menten型捕食者捕获延迟诱导捕食者-猎物模型的稳定性和分岔分析

Ming Liu, Dongpo Hu, F. Meng
{"title":"Michaelis-Menten型捕食者捕获延迟诱导捕食者-猎物模型的稳定性和分岔分析","authors":"Ming Liu, Dongpo Hu, F. Meng","doi":"10.3934/dcdss.2020259","DOIUrl":null,"url":null,"abstract":"The present paper considers a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. The existence of the nontrivial positive equilibria is discussed, and some sufficient conditions for locally asymptotically stability of one of the positive equilibria are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time delays as the bifurcation parameters. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out to support the analytical results.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting\",\"authors\":\"Ming Liu, Dongpo Hu, F. Meng\",\"doi\":\"10.3934/dcdss.2020259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper considers a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. The existence of the nontrivial positive equilibria is discussed, and some sufficient conditions for locally asymptotically stability of one of the positive equilibria are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time delays as the bifurcation parameters. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out to support the analytical results.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2020259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2020259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑了具有Michaelis-Menten型捕食者捕获的延迟诱导捕食者-猎物模型。讨论了非平凡正平衡点的存在性,给出了其中一个正平衡点局部渐近稳定的充分条件。同时,通过选取时滞作为分岔参数,讨论了Hopf分岔的存在性。利用泛函微分方程的范式理论和中心流形定理,确定了Hopf分岔的方向和分岔周期解的稳定性。最后,进行了数值模拟来支持分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting
The present paper considers a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. The existence of the nontrivial positive equilibria is discussed, and some sufficient conditions for locally asymptotically stability of one of the positive equilibria are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time delays as the bifurcation parameters. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out to support the analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信