雅可比多项式积积分的一个渐近公式

Maxim S. Derevyagin, Nicholas Juricic
{"title":"雅可比多项式积积分的一个渐近公式","authors":"Maxim S. Derevyagin, Nicholas Juricic","doi":"10.31390/JOSA.1.4.08","DOIUrl":null,"url":null,"abstract":"We recast Byerly's formula for integrals of products of Legendre polynomials. Then we adopt the idea to the case of Jacobi polynomials. After that, we use the formula to derive an asymptotic formula for integrals of products of Jacobi polynomials. The asymptotic formula is similar to an analogous one recently obtained by the first author and Jeff Geronimo for a different case. Thus, it suggests that such an asymptotic behavior is rather generic for integrals of products of orthogonal polynomials.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Asymptotic Formula for Integrals of Products of Jacobi Polynomials\",\"authors\":\"Maxim S. Derevyagin, Nicholas Juricic\",\"doi\":\"10.31390/JOSA.1.4.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recast Byerly's formula for integrals of products of Legendre polynomials. Then we adopt the idea to the case of Jacobi polynomials. After that, we use the formula to derive an asymptotic formula for integrals of products of Jacobi polynomials. The asymptotic formula is similar to an analogous one recently obtained by the first author and Jeff Geronimo for a different case. Thus, it suggests that such an asymptotic behavior is rather generic for integrals of products of orthogonal polynomials.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/JOSA.1.4.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/JOSA.1.4.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们对勒让德多项式积的积分改写了拜尔利公式。然后我们将这一思想应用于雅可比多项式的情况。然后,利用该公式导出了雅可比多项式积积分的渐近公式。该渐近公式与第一作者和Jeff Geronimo最近为另一种情况得到的类似公式相似。因此,它表明,这种渐近的行为是相当普遍的积分的正交多项式的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Asymptotic Formula for Integrals of Products of Jacobi Polynomials
We recast Byerly's formula for integrals of products of Legendre polynomials. Then we adopt the idea to the case of Jacobi polynomials. After that, we use the formula to derive an asymptotic formula for integrals of products of Jacobi polynomials. The asymptotic formula is similar to an analogous one recently obtained by the first author and Jeff Geronimo for a different case. Thus, it suggests that such an asymptotic behavior is rather generic for integrals of products of orthogonal polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信