{"title":"在多维网络中寻找冗余和互补的社区","authors":"M. Berlingerio, M. Coscia, F. Giannotti","doi":"10.1145/2063576.2063921","DOIUrl":null,"url":null,"abstract":"Community Discovery in networks is the problem of detecting, for each node, its membership to one of more groups of nodes, the communities, that are densely connected, or highly interactive. We define the community discovery problem in multidimensional networks, where more than one connection may reside between any two nodes. We also introduce two measures able to characterize the communities found. Our experiments on real world multidimensional networks support the methodology proposed in this paper, and open the way for a new class of algorithms, aimed at capturing the multifaceted complexity of connections among nodes in a network.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"6 1","pages":"2181-2184"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Finding redundant and complementary communities in multidimensional networks\",\"authors\":\"M. Berlingerio, M. Coscia, F. Giannotti\",\"doi\":\"10.1145/2063576.2063921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community Discovery in networks is the problem of detecting, for each node, its membership to one of more groups of nodes, the communities, that are densely connected, or highly interactive. We define the community discovery problem in multidimensional networks, where more than one connection may reside between any two nodes. We also introduce two measures able to characterize the communities found. Our experiments on real world multidimensional networks support the methodology proposed in this paper, and open the way for a new class of algorithms, aimed at capturing the multifaceted complexity of connections among nodes in a network.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"6 1\",\"pages\":\"2181-2184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finding redundant and complementary communities in multidimensional networks
Community Discovery in networks is the problem of detecting, for each node, its membership to one of more groups of nodes, the communities, that are densely connected, or highly interactive. We define the community discovery problem in multidimensional networks, where more than one connection may reside between any two nodes. We also introduce two measures able to characterize the communities found. Our experiments on real world multidimensional networks support the methodology proposed in this paper, and open the way for a new class of algorithms, aimed at capturing the multifaceted complexity of connections among nodes in a network.