稳健设计优化元建模技术的实证比较

S. Ullah, Hongya Wang, S. Menzel, B. Sendhoff, Thomas Bäck
{"title":"稳健设计优化元建模技术的实证比较","authors":"S. Ullah, Hongya Wang, S. Menzel, B. Sendhoff, Thomas Bäck","doi":"10.1109/SSCI44817.2019.9002805","DOIUrl":null,"url":null,"abstract":"This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"4 1","pages":"819-828"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization\",\"authors\":\"S. Ullah, Hongya Wang, S. Menzel, B. Sendhoff, Thomas Bäck\",\"doi\":\"10.1109/SSCI44817.2019.9002805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"4 1\",\"pages\":\"819-828\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究探讨了在鲁棒优化(即不确定性/噪声下的优化)背景下使用元建模技术的潜力。进行了系统的经验比较,以评估和比较不同的元建模技术的鲁棒优化。实验设置包括三种噪声水平,六种元建模算法,以及来自连续优化领域的六个基准问题,每个问题针对三个不同的维度。实验中使用了两种鲁棒性定义:鲁棒正则化和鲁棒组合。从建模精度和最优函数值两个方面对元建模技术进行了评价和比较。结果清楚地表明,Kriging、支持向量机和多项式回归在大多数情况下都达到了较高的精度,并且模型景观上的最优点接近测试函数的真实最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization
This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信