两相多孔介质流动演化Stokes-Cahn-Hilliard方程的均匀化

Asymptot. Anal. Pub Date : 2017-10-06 DOI:10.3233/ASY-171436
L. Baňas, H. Mahato
{"title":"两相多孔介质流动演化Stokes-Cahn-Hilliard方程的均匀化","authors":"L. Baňas, H. Mahato","doi":"10.3233/ASY-171436","DOIUrl":null,"url":null,"abstract":"We consider homogenization of a phase-field model for two-phase immiscible, incompressible porous media flow with surface tension effects. The pore-scale model consists of a strongly coupled system of time-dependent Stokes-Cahn-Hilliard equations. In the considered model the fluids are separated by an evolving diffuse interface of a finite width, which is assumed to be independent of the scale parameter ε. We obtain upscaled equations for the considered model by a rigorous two-scale convergence approach.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"6 1","pages":"77-95"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Homogenization of evolutionary Stokes-Cahn-Hilliard equations for two-phase porous media flow\",\"authors\":\"L. Baňas, H. Mahato\",\"doi\":\"10.3233/ASY-171436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider homogenization of a phase-field model for two-phase immiscible, incompressible porous media flow with surface tension effects. The pore-scale model consists of a strongly coupled system of time-dependent Stokes-Cahn-Hilliard equations. In the considered model the fluids are separated by an evolving diffuse interface of a finite width, which is assumed to be independent of the scale parameter ε. We obtain upscaled equations for the considered model by a rigorous two-scale convergence approach.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"6 1\",\"pages\":\"77-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-171436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑了具有表面张力效应的两相不可混溶、不可压缩多孔介质流相场模型的均质化。孔隙尺度模型由一个依赖时间的Stokes-Cahn-Hilliard方程的强耦合系统组成。在考虑的模型中,流体被一个有限宽度的扩散界面分离,该界面与尺度参数ε无关。我们通过严格的双尺度收敛方法得到了所考虑模型的上尺度方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of evolutionary Stokes-Cahn-Hilliard equations for two-phase porous media flow
We consider homogenization of a phase-field model for two-phase immiscible, incompressible porous media flow with surface tension effects. The pore-scale model consists of a strongly coupled system of time-dependent Stokes-Cahn-Hilliard equations. In the considered model the fluids are separated by an evolving diffuse interface of a finite width, which is assumed to be independent of the scale parameter ε. We obtain upscaled equations for the considered model by a rigorous two-scale convergence approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信