{"title":"两相多孔介质流动演化Stokes-Cahn-Hilliard方程的均匀化","authors":"L. Baňas, H. Mahato","doi":"10.3233/ASY-171436","DOIUrl":null,"url":null,"abstract":"We consider homogenization of a phase-field model for two-phase immiscible, incompressible porous media flow with surface tension effects. The pore-scale model consists of a strongly coupled system of time-dependent Stokes-Cahn-Hilliard equations. In the considered model the fluids are separated by an evolving diffuse interface of a finite width, which is assumed to be independent of the scale parameter ε. We obtain upscaled equations for the considered model by a rigorous two-scale convergence approach.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"6 1","pages":"77-95"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Homogenization of evolutionary Stokes-Cahn-Hilliard equations for two-phase porous media flow\",\"authors\":\"L. Baňas, H. Mahato\",\"doi\":\"10.3233/ASY-171436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider homogenization of a phase-field model for two-phase immiscible, incompressible porous media flow with surface tension effects. The pore-scale model consists of a strongly coupled system of time-dependent Stokes-Cahn-Hilliard equations. In the considered model the fluids are separated by an evolving diffuse interface of a finite width, which is assumed to be independent of the scale parameter ε. We obtain upscaled equations for the considered model by a rigorous two-scale convergence approach.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"6 1\",\"pages\":\"77-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-171436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homogenization of evolutionary Stokes-Cahn-Hilliard equations for two-phase porous media flow
We consider homogenization of a phase-field model for two-phase immiscible, incompressible porous media flow with surface tension effects. The pore-scale model consists of a strongly coupled system of time-dependent Stokes-Cahn-Hilliard equations. In the considered model the fluids are separated by an evolving diffuse interface of a finite width, which is assumed to be independent of the scale parameter ε. We obtain upscaled equations for the considered model by a rigorous two-scale convergence approach.