解决mooc随机实验的常见分析挑战:损耗与零膨胀

Anne Lamb, Jascha Smilack, Andrew D. Ho, J. Reich
{"title":"解决mooc随机实验的常见分析挑战:损耗与零膨胀","authors":"Anne Lamb, Jascha Smilack, Andrew D. Ho, J. Reich","doi":"10.1145/2724660.2724669","DOIUrl":null,"url":null,"abstract":"Massive open online course (MOOC) platforms increasingly allow easily implemented randomized experiments. The heterogeneity of MOOC students, however, leads to two methodological obstacles in analyzing interventions to increase engagement. (1) Many MOOC participation metrics have distributions with substantial positive skew from highly active users as well as zero-inflation from high attrition. (2) High attrition means that in some experimental designs, most users assigned to the treatment never receive it; analyses that do not consider attrition result in \"intent-to-treat\" (ITT) estimates that underestimate the true effects of interventions. We address these challenges in analyzing an intervention to improve forum participation in the 2014 JusticeX course offered on the edX MOOC platform. We compare the results of four ITT models (OLS, logistic, quantile, and zero-inflated negative binomial regressions) and three \"treatment-on-treated\" (TOT) models (Wald estimator, 2SLS with a second stage logistic model, and instrumental variables quantile regression). A combination of logistic, quantile, and zero-inflated negative binomial regressions provide the most comprehensive description of the ITT effects. TOT methods then adjust the ITT underestimates. Substantively, we demonstrate that self-assessment questions about forum participation encourage more students to engage in forums and increases the participation of already active students.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Addressing Common Analytic Challenges to Randomized Experiments in MOOCs: Attrition and Zero-Inflation\",\"authors\":\"Anne Lamb, Jascha Smilack, Andrew D. Ho, J. Reich\",\"doi\":\"10.1145/2724660.2724669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive open online course (MOOC) platforms increasingly allow easily implemented randomized experiments. The heterogeneity of MOOC students, however, leads to two methodological obstacles in analyzing interventions to increase engagement. (1) Many MOOC participation metrics have distributions with substantial positive skew from highly active users as well as zero-inflation from high attrition. (2) High attrition means that in some experimental designs, most users assigned to the treatment never receive it; analyses that do not consider attrition result in \\\"intent-to-treat\\\" (ITT) estimates that underestimate the true effects of interventions. We address these challenges in analyzing an intervention to improve forum participation in the 2014 JusticeX course offered on the edX MOOC platform. We compare the results of four ITT models (OLS, logistic, quantile, and zero-inflated negative binomial regressions) and three \\\"treatment-on-treated\\\" (TOT) models (Wald estimator, 2SLS with a second stage logistic model, and instrumental variables quantile regression). A combination of logistic, quantile, and zero-inflated negative binomial regressions provide the most comprehensive description of the ITT effects. TOT methods then adjust the ITT underestimates. Substantively, we demonstrate that self-assessment questions about forum participation encourage more students to engage in forums and increases the participation of already active students.\",\"PeriodicalId\":20664,\"journal\":{\"name\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2724660.2724669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2724669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

大规模在线开放课程(MOOC)平台越来越容易实现随机实验。然而,MOOC学生的异质性导致在分析提高参与度的干预措施时存在两个方法上的障碍。(1)许多MOOC参与指标的分布在高度活跃的用户中存在显著的正偏态,而在高流失率中存在零通胀。(2)高损耗是指在一些实验设计中,大多数分配到处理的用户从未接受过处理;不考虑损耗的分析结果是“治疗意向”(ITT)估计,低估了干预措施的真正效果。我们通过分析一项干预措施来解决这些挑战,以提高edX MOOC平台上2014年JusticeX课程的论坛参与度。我们比较了四种ITT模型(OLS、logistic、分位数和零膨胀负二项回归)和三种“治疗对治疗”(TOT)模型(Wald估计、2SLS与第二阶段logistic模型和工具变量分位数回归)的结果。逻辑、分位数和零膨胀负二项回归的组合提供了ITT效应的最全面描述。然后,TOT方法调整了ITT的低估。实质上,我们证明了关于论坛参与的自我评估问题鼓励更多的学生参与论坛,并增加了已经活跃的学生的参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing Common Analytic Challenges to Randomized Experiments in MOOCs: Attrition and Zero-Inflation
Massive open online course (MOOC) platforms increasingly allow easily implemented randomized experiments. The heterogeneity of MOOC students, however, leads to two methodological obstacles in analyzing interventions to increase engagement. (1) Many MOOC participation metrics have distributions with substantial positive skew from highly active users as well as zero-inflation from high attrition. (2) High attrition means that in some experimental designs, most users assigned to the treatment never receive it; analyses that do not consider attrition result in "intent-to-treat" (ITT) estimates that underestimate the true effects of interventions. We address these challenges in analyzing an intervention to improve forum participation in the 2014 JusticeX course offered on the edX MOOC platform. We compare the results of four ITT models (OLS, logistic, quantile, and zero-inflated negative binomial regressions) and three "treatment-on-treated" (TOT) models (Wald estimator, 2SLS with a second stage logistic model, and instrumental variables quantile regression). A combination of logistic, quantile, and zero-inflated negative binomial regressions provide the most comprehensive description of the ITT effects. TOT methods then adjust the ITT underestimates. Substantively, we demonstrate that self-assessment questions about forum participation encourage more students to engage in forums and increases the participation of already active students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信