{"title":"应用于凝胶电泳的逆回归模型置信带","authors":"M. Birke, N. Bissantz, H. Holzmann","doi":"10.17877/DE290R-14439","DOIUrl":null,"url":null,"abstract":"We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two period functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 10711095] we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Confidence bands for inverse regression models with application to gel electrophoresis\",\"authors\":\"M. Birke, N. Bissantz, H. Holzmann\",\"doi\":\"10.17877/DE290R-14439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two period functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 10711095] we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-14439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-14439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Confidence bands for inverse regression models with application to gel electrophoresis
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two period functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 10711095] we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract.