P. Gaillardon, L. Amarù, Shashikanth Bobba, M. D. Marchi, D. Sacchetto, Y. Leblebici, G. Micheli
{"title":"具有可控极性的垂直堆叠双栅纳米线场效应管:从器件到常规asic","authors":"P. Gaillardon, L. Amarù, Shashikanth Bobba, M. D. Marchi, D. Sacchetto, Y. Leblebici, G. Micheli","doi":"10.7873/DATE.2013.137","DOIUrl":null,"url":null,"abstract":"Vertically stacked nanowire FETs (NWFETs) with gate-all-around structure are the natural and most advanced extension of FinFETs. At advanced technology nodes, many devices exhibit ambipolar behavior, i.e., the device shows n- and p-type characteristics simultaneously. In this paper, we show that, by engineering of the contacts and by constructing independent double-gate structures, the device polarity can be electrostatically programmed to be either n- or p-type. Such a device enables a compact realization of XOR-based logic functions at the cost of a denser interconnect. To mitigate the added area/routing overhead caused by the additional gate, an approach for designing an efficient regular layout, called Sea-of-Tiles is presented. Then, specific logic synthesis techniques, supporting the higher expressive power provided by this technology, are introduced and used to showcase the performance of the controllable-polarity NWFETs circuits in comparison with traditional CMOS circuits.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"52 1","pages":"625-630"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Vertically-stacked double-gate nanowire FETs with controllable polarity: From devices to regular ASICs\",\"authors\":\"P. Gaillardon, L. Amarù, Shashikanth Bobba, M. D. Marchi, D. Sacchetto, Y. Leblebici, G. Micheli\",\"doi\":\"10.7873/DATE.2013.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertically stacked nanowire FETs (NWFETs) with gate-all-around structure are the natural and most advanced extension of FinFETs. At advanced technology nodes, many devices exhibit ambipolar behavior, i.e., the device shows n- and p-type characteristics simultaneously. In this paper, we show that, by engineering of the contacts and by constructing independent double-gate structures, the device polarity can be electrostatically programmed to be either n- or p-type. Such a device enables a compact realization of XOR-based logic functions at the cost of a denser interconnect. To mitigate the added area/routing overhead caused by the additional gate, an approach for designing an efficient regular layout, called Sea-of-Tiles is presented. Then, specific logic synthesis techniques, supporting the higher expressive power provided by this technology, are introduced and used to showcase the performance of the controllable-polarity NWFETs circuits in comparison with traditional CMOS circuits.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"52 1\",\"pages\":\"625-630\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vertically-stacked double-gate nanowire FETs with controllable polarity: From devices to regular ASICs
Vertically stacked nanowire FETs (NWFETs) with gate-all-around structure are the natural and most advanced extension of FinFETs. At advanced technology nodes, many devices exhibit ambipolar behavior, i.e., the device shows n- and p-type characteristics simultaneously. In this paper, we show that, by engineering of the contacts and by constructing independent double-gate structures, the device polarity can be electrostatically programmed to be either n- or p-type. Such a device enables a compact realization of XOR-based logic functions at the cost of a denser interconnect. To mitigate the added area/routing overhead caused by the additional gate, an approach for designing an efficient regular layout, called Sea-of-Tiles is presented. Then, specific logic synthesis techniques, supporting the higher expressive power provided by this technology, are introduced and used to showcase the performance of the controllable-polarity NWFETs circuits in comparison with traditional CMOS circuits.