{"title":"铸造和三维选择性激光熔化制备牙科用Co-Cr合金的显微组织","authors":"M. Vasylyev, B. Mordyuk, S. Voloshko, P. Gurin","doi":"10.15407/ufm.23.02.337","DOIUrl":null,"url":null,"abstract":"The review analyses the microstructure of the commercial Co–Cr–(Mo, W) dental alloys fabricated by 3D digital selective laser melting (SLM), which is the most promising technique among the emerging additive fabrication technologies used for metal products manufacturing in dentistry. In this regard, the main goal is to compare the microstructures of the metal dental products produced by two currently used technologies, namely, conventional casting and SLM. We consider the latest research published from 2013 to 2022. The microstructures are evaluated using optical microscopy (OM), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM–EDS), x-ray diffractometry (XRD), electron backscatter diffraction (EBSD) pattern analysis, and atomic force microscopy (AFM). The microstructure analysis allows concluding whether the SLM fabrication process is suitable for dental applications. As shown, the microstructure of the Co–Cr dental alloys depends on both the chemical composition of the samples and the parameters of the manufacturing technique used. Experimental results have proven that, in contrast to the conventional casting, the SLM-fabricated specimens display superior microstructure due to complete local melting and rapid solidification. Additionally, the SLM process minimizes residual flaws and porosity. As a result, SLM allows producing the dense material comprising homogeneous fine-grain microstructure.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstructure of Co–Cr Dental Alloys Manufactured by Casting and 3D Selective Laser Melting\",\"authors\":\"M. Vasylyev, B. Mordyuk, S. Voloshko, P. Gurin\",\"doi\":\"10.15407/ufm.23.02.337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The review analyses the microstructure of the commercial Co–Cr–(Mo, W) dental alloys fabricated by 3D digital selective laser melting (SLM), which is the most promising technique among the emerging additive fabrication technologies used for metal products manufacturing in dentistry. In this regard, the main goal is to compare the microstructures of the metal dental products produced by two currently used technologies, namely, conventional casting and SLM. We consider the latest research published from 2013 to 2022. The microstructures are evaluated using optical microscopy (OM), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM–EDS), x-ray diffractometry (XRD), electron backscatter diffraction (EBSD) pattern analysis, and atomic force microscopy (AFM). The microstructure analysis allows concluding whether the SLM fabrication process is suitable for dental applications. As shown, the microstructure of the Co–Cr dental alloys depends on both the chemical composition of the samples and the parameters of the manufacturing technique used. Experimental results have proven that, in contrast to the conventional casting, the SLM-fabricated specimens display superior microstructure due to complete local melting and rapid solidification. Additionally, the SLM process minimizes residual flaws and porosity. As a result, SLM allows producing the dense material comprising homogeneous fine-grain microstructure.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.23.02.337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.23.02.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure of Co–Cr Dental Alloys Manufactured by Casting and 3D Selective Laser Melting
The review analyses the microstructure of the commercial Co–Cr–(Mo, W) dental alloys fabricated by 3D digital selective laser melting (SLM), which is the most promising technique among the emerging additive fabrication technologies used for metal products manufacturing in dentistry. In this regard, the main goal is to compare the microstructures of the metal dental products produced by two currently used technologies, namely, conventional casting and SLM. We consider the latest research published from 2013 to 2022. The microstructures are evaluated using optical microscopy (OM), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM–EDS), x-ray diffractometry (XRD), electron backscatter diffraction (EBSD) pattern analysis, and atomic force microscopy (AFM). The microstructure analysis allows concluding whether the SLM fabrication process is suitable for dental applications. As shown, the microstructure of the Co–Cr dental alloys depends on both the chemical composition of the samples and the parameters of the manufacturing technique used. Experimental results have proven that, in contrast to the conventional casting, the SLM-fabricated specimens display superior microstructure due to complete local melting and rapid solidification. Additionally, the SLM process minimizes residual flaws and porosity. As a result, SLM allows producing the dense material comprising homogeneous fine-grain microstructure.
期刊介绍:
The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.