{"title":"量子理论的算法方法1:许多粒子量子动力学的特征","authors":"Y. Ozhigov, I. Semenihin","doi":"10.1117/12.683114","DOIUrl":null,"url":null,"abstract":"Algorithmic approach to quantum theory is considered. It is based on the supposition that every evolution of many particle system can be simulated by classical algorithms of polynomial complexity. This hypothesis agrees with all known experiments but it presumes the principle cut-off of quantum formalism because it excludes a scalable quantum computer. Algorithmic approach describes quantum evolution uniformly, without separation of measurements from the unitary dynamics; it is shown how Bohrn rule for quantum probability follows from the basic principles of this approach. The radical difference of algorithmic approach from the standard and its perspectives are discussed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic approach to quantum theory 1: features of many particle quantum dynamics\",\"authors\":\"Y. Ozhigov, I. Semenihin\",\"doi\":\"10.1117/12.683114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic approach to quantum theory is considered. It is based on the supposition that every evolution of many particle system can be simulated by classical algorithms of polynomial complexity. This hypothesis agrees with all known experiments but it presumes the principle cut-off of quantum formalism because it excludes a scalable quantum computer. Algorithmic approach describes quantum evolution uniformly, without separation of measurements from the unitary dynamics; it is shown how Bohrn rule for quantum probability follows from the basic principles of this approach. The radical difference of algorithmic approach from the standard and its perspectives are discussed.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.683114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.683114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithmic approach to quantum theory 1: features of many particle quantum dynamics
Algorithmic approach to quantum theory is considered. It is based on the supposition that every evolution of many particle system can be simulated by classical algorithms of polynomial complexity. This hypothesis agrees with all known experiments but it presumes the principle cut-off of quantum formalism because it excludes a scalable quantum computer. Algorithmic approach describes quantum evolution uniformly, without separation of measurements from the unitary dynamics; it is shown how Bohrn rule for quantum probability follows from the basic principles of this approach. The radical difference of algorithmic approach from the standard and its perspectives are discussed.